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Executive summary 
Understanding how farmers and land managers respond to policy incentives is essential for 
designing effective land-use policies that deliver on Europe’s climate, biodiversity, and 
sustainability goals. This report presents new evidence from the LAMASUS project showing 
how empirical data on past land-use responses—particularly regarding organic farming 
uptake—can be used to improve the predictive accuracy of spatial land-use models. Drawing 
on detailed econometric analyses and high-resolution data covering most EU countries, the 
report identifies key drivers behind land-use and land-management changes, including 
policy instruments, biophysical constraints, and socio-economic factors.  

These findings were used to refine the CLUMondo model, a high-resolution land-use 
simulation tool capable of projecting the future impacts of EU and national policies across 
different regions and landscapes. Notably, new land-use categories for organic farming were 
introduced, and transition rules were adjusted based on observed uptake patterns. A 
validation using both parcel-level French data and regional NUTS 3-level data across the EU 
confirms that the revised model better reflects real-world changes. For policymakers, this 
means more reliable scenario analysis: the improved model can now simulate how different 
policy choices may shape land use at local and regional scales, helping anticipate trade-offs, 
maximize co-benefits, and support more targeted interventions. The enhanced model 
contributes directly to the scenario work in LAMASUS and strengthens the scientific basis 
for designing and evaluating future land and agri-environmental policies in Europe. 
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1. Introduction  
Assessing how policies influence land use and land management is essential for designing 
effective, evidence-based interventions at local, national, and European levels. 
Understanding how landscapes respond to instruments such as organic farming subsidies 
under the Common Agricultural Policy (CAP) is particularly important, given that many land-
based policies require years or even decades to produce measurable effects on biodiversity 
and climate mitigation. Reliable ex-ante assessments are therefore crucial to inform 
decisions before impacts materialise on the ground. 

High-resolution land-use models such as CLUMondo are central tools for such assessments. 
They simulate policy impacts under alternative scenarios and account for local conditions 
and spatial heterogeneity. When coupled with macro-level economic models, as in 
LAMASUS, they allow for consistent analysis across scales. However, parametrising these 
models is challenging. It requires translating a complex set of socio-economic, biophysical, 
and policy drivers into rules and probabilities that govern land-use and land-management 
transitions. These parameters are often based on literature or expert assumptions, 
particularly when representing novel or rapidly evolving policies. 

This deliverable addresses that challenge by drawing on recent empirical evidence 
generated within LAMASUS. Specifically, it links the econometric analyses from WP4 with 
the spatial simulation framework of CLUMondo to improve the realism and credibility of ex-
ante projections. By doing so, it connects two critical parts of the project: (1) the ex-post 
assessment of land-use and land-management change based on observed behaviour and 
high-resolution datasets, and (2) the ex-ante modelling of future land-use dynamics at 1 km² 
resolution across Europe. 

Chapter 2 of the report presents the ex-post modelling results. Two applications are 
highlighted. First, a spatial econometric analysis of land-use and land-management drivers 
using the harmonised geospatial database developed in WP2, together with policy and non-
policy variables from WP3. Second, a logistic regression model of organic farming uptake 
across Europe, based on a harmonised dataset of organic producer certificates.  

Chapter 0 documents how these findings were used to update the CLUMondo model. Land 
system maps were revised to better reflect observed land-use intensities, nitrogen inputs, 
livestock densities, and forest productivity. New land systems for organic cropland, 
grassland, and mixed farming were added, with associated yield penalties and transition 
constraints calibrated using the WP4 evidence.  

Finally, Chapter 4 presents a validation of the model’s policy relevance. Using parcel-level 
data from France and subsidy information from the Common Audit Trail System (CATS), we 
tested whether the model’s predicted suitability aligns with actual conversion to organic 
farming at the NUTS-3 level.  
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2. Ex-post models and uncertainties  
Understanding the real-world impacts of land-use policies requires robust empirical 
analysis of how land users have responded to past interventions. In this section, we present 
the ex-post econometric models developed in LAMASUS to quantify these responses. Using 
high-resolution spatial data and consistent methods, the models estimate the key drivers of 
land-use and land-management change across Europe, focusing on the uptake of organic 
farming. These empirical insights not only provide parameter values for ex-ante simulations 
but also quantify uncertainty around behavioural responses, highlighting where model 
projections are most robust and where caution is warranted. 

 

2.1. LAND-USE CHANGES  
Land-use change (LUC) is driven by socio-economic, institutional, and biophysical factors, 
and involves shifts across multiple competing land uses. Capturing these dynamics requires 
more than binary models, which reduce change to simple yes/no outcomes and ignore the 
set of alternatives at each location. A multinomial logistic (MNL) framework addresses this 
by modelling transitions across several land-use categories simultaneously and linking them 
to explanatory variables. This makes it possible to quantify how policies, markets, and 
environmental conditions affect the relative probability of different land-use outcomes. In 
this application, we use the MNL approach to assess how CAP Pillar I and Pillar II 
expenditures influence LUC. 

2.1.1. Method & Data 

We utilise the LAMASUS LUM geodatabase from WP2 
(https://www.lamasus.eu/resources/lum-geodatabase), based on the  Corine land cover (CLC) 
annual time series product and including LUC maps between 2000 and 2018 as the dependent 
variables to estimate the econometric model described below. These land cover products are 
available at the 100m2 resolution, and they provide robust and harmonised maps for 
obtaining gross land-use change transitions between all considered land use classes. In the 
model setup, we aggregate the initial CLC landcover classes to an augmented Ecosystem 
Type Level 2 (ETL2) classification. The classification of CLC land cover types to ETL2 land 
use classes is summarised in Table A1 in the Annex. Moreover, the table also provides the 
corresponding UNFCCC classification and the ETL2 abbreviations used in the Figures 
presenting the results. An overview of the modelled LUM classes is provided by Table 1. 
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Table 1: LUM classes and their abbreviations. 

Abbr. LUM Class Abbr. LUM Class Abbr. LUM Class 

ACRP Arable cropland GRSL Grassland HCRP Heterogeneous agricultural 
areas 

HEAS Heathland and shrub MARI Marine MITW Marince inlets and transitional 
waters 

PAST Pastures PCRP Permanent crops RILA Rivers and lakes 

SPVA Sparsely vegetated areas URBN Urban WOFO Woodland and forest 

WTLN Wetlands     

 

In the econometric framework, we model land-use change decisions within an economic 
framework following Nerlove (1979). In each 10 km2 grid cell 𝑖 (with 𝑖 = 1,… ,𝑁) considers 
the decision of a representative land user, who has to economically optimise the division of 
the cell among 𝐽 land use classes. In a given time horizon between 𝑡 and 𝑡 + ℎ (where ℎ 
denotes the horizon), the land user decides independently for each land use 𝑗 (with 𝑗 =
1,… , 𝐽) on what share of the land is kept in use 𝑗 or converted to any one of the other 𝐽 − 1 
land use classes. The land user decides this based on the net profits associated with 
switching to the new land use class minus the cost of land conversion.  

The utility of land-use conversion from the original land use can be expressed in the 
framework of the random utility model: 

𝑢!" = 𝜇!" + 𝜀!" , (1) 

where 𝑢!" denotes the utility of converting from the original land use to the land use 𝑗. The 
utility is assumed to be a linear combination of 𝜇!", a mean process of relative net profits and 
costs of land use conversion, and 𝜀!", a random error term. 

Based on random choice theory, the land-owner will choose to convert the land to land use 
class 𝑗 over an alternative land use class 𝑗∗ (𝑗∗ = 1,… , 𝐽) when the utility of 𝑗 is higher than 
that of 𝑗∗. When considering land use shares, this implies that the share of land-converted, 
denoted by 𝑦!" – directly depends on the probability: 

𝑦!" = 𝑝(𝑢!" > 𝑢!"∗ , ∀𝑗 ≠ 𝑗∗). (2) 

If we assume that 𝜀!" is logistically distributed, the random choice framework in Eq. (2) gives 
rise to a multinomial logit specification. The multinomial logit prior estimation model is 
specified as: 

𝑦!"$%& =
'()	(,"#

$ )

∑ '()	(,"#
$ )#

. (3) 

Here, we have introduced the time dimension 𝑡 (with 𝑡 = 1,… , 𝑇), with 𝑦!"$%& denoting the 
share of land converted in the time period 𝑡 to 𝑡 + 1. This is a function of the log-odds 𝜇!"$  at 
time 𝑡. So far we have not specified the construction of these log-odds 𝜇!"$ : it is a linear 
combination of a set of explanatory variables and their coefficients, which are to be 
estimated: 

𝜇!"$ = 𝛼" + 𝑓(𝑦!$)𝛽"& + 𝑥!$𝛽"/ + 𝑧!𝛽"0, (4) 
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where 𝛼" is the land use specific intercept, 𝑓(𝑦!$) is a 1 × 𝐽 vector of land use area shares at 
time 𝑡, which are dynamically updated when projecting the model. 𝑥!$ is a 1 × 𝑘& vector 
collecting a set of time-varying (projected) land use change, drivers associated with the 10 
km2 grid cell 𝑖. 𝑧! is a 1 × 𝑘/ vector with static land use change drivers. 𝛽"&, 𝛽"/, and 𝛽"0 are the 
corresponding coefficients, which are to be estimated within the framework. The list of land 
use drivers is outlined in Table 2. 

 

Table 2: Variables included as covariates for estimation. 

VARIABLE DESCRIPTION TIME RESOLUTION TRANSFORMATION SOURCE 

Dependent variable 

Land use 
change 

Share of land use 
change transitions 

2000 -
2018 100m2 Share of LUC in km2 

Corine land cover annual 
time series 

Explanatory variables 

Pillar I + II 
measures (CAP 
payments) 

Agricultural policy 
variables 

2009 - 
2018 NUTS3 

Absolute difference in 
million € 

Clearance of Accounts 
Audit Trail System (CATS) 
database 

Natura2000 
areas 

Nature protection 
areas 

2018 Polygons 
Polygon coverage of 
pixel in km2 

Natura 2000 (vector) - 
version 2022 

Land use 

Land use class 
area change 
relative to baseline 
at initial pixel 

2000 100m2 

Aggregated to 10 km², 
expressed as additive 
log-ratios (ALR) with 
origin LU class as 
reference 

Corine land cover annual 
time series 

Population 
density 

Population per 
km2 2021 1km2 

Mean and variance 
across 1km2 pixel 
resolution 

GISCO census grid 
(Eurostat) 

Altitude 
Elevation in m 
above sea level 2012 25m2 

GISCO digital elevation 
model over Europe (EU-
DEM) Slope 

Slope at a point, in 
degrees (elevation 
change per 
horizontal 
distance) 

2012 25m2 

 

The estimation is carried out in a Bayesian fashion using the framework of Polson et al (2013). 
We assume a rather non-informative prior setting of a Gaussian with zero mean and 101 
variance for 𝛽". The estimation follows the Markov-Chain Monte Carlo algorithm laid out in 
Polson et al (2013). Our results are based on 5,000 iterations, where the first 3000 were 
discarded as burn-in.  
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2.1.2. Results & Discussion 

Direct interpretation of the raw coefficients from multinomial logit (MNL) models is often 
problematic because they represent changes in the log-odds of one outcome relative to a 
baseline category. These log-odds are difficult to interpret in substantive terms, particularly 
when multiple alternatives and non-linear link functions are involved. Moreover, the 
magnitude of coefficients is sensitive to the choice of reference category, which complicates 
comparisons across land-use transitions.  

To address these challenges, we present results as average marginal effects (AMEs). AMEs 
translate the estimated coefficients into probability changes, averaged across the observed 
data, thereby providing an intuitive measure of how a unit change in a covariate shifts the 
likelihood of each land-use transition. This representation enables meaningful comparisons 
across covariates and outcomes, makes effect sizes directly interpretable in terms of 
transition probabilities, and highlights both the direction and practical importance of drivers 
of land-use change. 

The three figures report average marginal effects (AMEs) from multinomial logit (MNL) 
models of land-use transitions. Each panel corresponds to a given origin land-use category—
cropland (Figure 1), grazing land (Figure 2), and forest or other natural vegetation (Figure 3) 
— with effects estimated for transitions into a full set of alternative land uses. Rows represent 
covariates, including policy instruments, biophysical attributes, and socio-economic factors. 
The shading indicates the sign and magnitude of the effect, while the size of the fill reflects 
whether zero is excluded from the credible interval. Together, these heatmaps provide a 
comprehensive overview of which drivers systematically shift the probability of land-use 
change, and in which direction. 

For cropland transitions, the results highlight the relevance of several policy variables. 
Coupled payments exhibit significant negative effects on conversion of cropland into 
alternative uses, especially into grazing land, consistent with the role of commodity-specific 
subsidies in maintaining land under cultivation. In contrast, environmental payments and 
protected area designations increase the probability of cropland being converted into non-
agricultural or natural uses, particularly forests and grasslands. Regional development and 
market measures also register localized but significant effects, pointing to heterogeneous 
pathways where economic incentives either reinforce the persistence of cropland or 
accelerate transitions out depending on context. 

For grazing land, we observe a different structure of policy effects. Coupled and decoupled 
payments display weaker influence, but technical assistance and human capital 
improvements increase the probability of grazing areas transitioning into more intensive 
agricultural uses, notably cropland and heterogeneous agricultural mosaics. Conversely, 
physical capital investments are associated with persistence of grazing, reducing the 
likelihood of reallocation into forests or wetlands. Natura 2000 designations and 
environmental schemes again push transitions toward natural land covers, highlighting the 
capacity of conservation-oriented policy to redirect marginal grazing land into semi-natural 
habitats. 
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Figure 1: Heatmap of average marginal effects (AMEs) from the multinomial logit (MNL) model of land-use transitions from cropland origin.  

Note: Each panel shows estimated AMEs for transitions from a given cropland origin class (ACRP, HCRP, PCRP) to alternative land-use categories. Rows represent covariates, and colours 
denote the direction (purple = positive, brown = negative) and magnitude of effects. Effects are expressed in the original units of each covariate, corresponding to the change in transition 
probability associated with a one-unit increase in the covariate. The size of filled cells reflects the statistical credibility of the effect’s sign: fully filled cells indicate that zero is excluded from 
the credible interval, while progressively smaller fills indicate increasing overlap of zero with the posterior distribution. Fully gray cells indicate cases where no estimate is available. 
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Figure 2: Heatmap of average marginal effects (AMEs) from the multinomial logit (MNL) model of land-use transitions from Grazing Land origin.  

Note: Each panel shows estimated AMEs for transitions from a given grazing land origin class (GRSL, PAST) to alternative land-use categories. Rows represent covariates, and colors denote 
the direction and magnitude of effects (purple = positive, brown = negative). Effects are expressed in the original units of each covariate, corresponding to the change in transition probability 
associated with a one-unit increase in the covariate. The size of filled cells reflects the statistical credibility of the effect’s sign: fully filled cells indicate that zero is excluded from the credible 
interval, while progressively smaller fills indicate increasing overlap of zero with the posterior distribution. Fully gray cells indicate cases where no estimate is available. 
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Figure 3: Heatmap of average marginal effects (AMEs) from the multinomial logit (MNL) model of land-use transitions from Forest & Other Vegetation origin.  

Note: Each panel shows estimated AMEs for transitions from a given Other Vegetation & Forest origin class (HEAS, WOFO) to alternative land-use categories. Rows represent covariates, and 
colors denote the direction and magnitude of effects (purple = positive, brown = negative). Effects are expressed in the original units of each covariate, corresponding to the change in transition 
probability associated with a one-unit increase in the covariate. The size of filled cells reflects the statistical credibility of the effect’s sign: fully filled cells indicate that zero is excluded from 
the credible interval, while progressively smaller fills indicate increasing overlap of zero with the posterior distribution. Fully gray cells indicate cases where no estimate is available. 
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Forest and other natural vegetation origins show fewer significant responses to agricultural 
support measures, but policy variables remain relevant. Technical assistance and regional 
development measures occasionally promote transitions into agricultural categories, 
suggesting that targeted infrastructure or advisory schemes can facilitate forest clearing. By 
contrast, agri-environmental payments and protected area coverage strongly reduce the 
probability of such conversions, reinforcing conservation outcomes. Overall, these results 
underscore that the policy environment — particularly the balance between commodity 
support and conservation instruments — plays a decisive role in mediating land-use 
transitions, with effects that are strongly origin-dependent. 

 

2.2. ORGANIC FARMING  
Organic farming is a sustainable farming practice with high relevance in current EU policy, 
such as the Farm-to-fork strategy, which aims to promote a more sustainable food system in 
the EU. Organic farming is a more broadly adopted and recorded sustainable farming practice 
with clear rules for production and certification. Therefore, we conducted a spatial analysis of 
organic agriculture in Europe in WP4. The study aimed to find the enabling and constraining 
factors of organic agriculture in a location (1x1km grid).  

The results of the spatial analysis in WP4 will be used to inform the CLUMondo model. A 
baseline run, where we assume, based on current trends, that organic farming increases to 
15% at EU level by 2030 is presented in Section 3.1.  In WP8, these model runs will be 
expanded to analyse the impacts of the policy target to increase the share of organic 
agriculture to 25% of total UAA in the EU by 2030 and potential land use trade-offs thereof.  

In WP4, we built a logistic regression model to determine what factors enable or constrain 
organic farming in a location. The model covered the EU27 countries and Norway, 
Switzerland and the UK. The model was run in four different constellations: for all organic 
producer types, for organic crop farmers, organic livestock farmers and for organic mixed 
farmers (See Table 3).  

The location of organic farms in Europe was derived from organic producer certificates 
collected from public online certificate repositoriesi and government websites. The most 
current certificate data available for each country was collected, ranging from the years 2014-
2024. For Sweden, Norway, and Switzerland, no certificate data was found, and national 
statistics on organic agriculture was used instead. For 19 countries, the certificate data 
included information on what type of organic production was taking place at the farm. These 
certificates enabled the separation of producer types to organic crop producers, organic 
livestock producers, and organic mixed producers (both livestock and crops).  

To validate that the collection of organic producer certificates is representative of the organic 
producer population in each country, the number of certificates collected in this study was 
compared to the number of organic producers reported in FiBL statistics for each countryii in 
the year 2022. After the collection was complete, the certificates were mapped to a postcode 

 
i bioC.info, accessed at webgate.ec.europa.eu 

ii https://statistics.fibl.org/world/area-world.html 
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point map and the points were then snapped to the closest agricultural pixel according to the 
land use map of Europe from Sandström et al. (2024).  

Several independent variables commonly chosen to determine agricultural management 
suitability were used (Abd-Elmabod et al., 2020). First, climate variables such as mean annual 
air temperature, mean diurnal air temperature range, annual range of air temperature, annual 
precipitation, precipitation seasonality, and aridity were included. These variables affect 
growing seasons and plant growth (Karger et al., 2017; Zomer et al., 2022).  

Organic farming might be incentivised in areas with low soil fertility or less favoured areas for 
agriculture because it might become more economically viable to farm in these areas with 
organic price premiums (Kremmydas et al 2024). We therefore included variables that 
indicate if an area is less favourable for agriculture, such as slope, the percentage of flat land, 
and elevation (Klima et al, 2020). Variables that indicate soil health, like available water 
capacity, bulk density, cation exchange capacity, coarse fragments, pH value, sand, soil 
organic carbon, nitrogen and phosphorus availability for plant uptake (Ballabio et al, 2016, 
2019, Panagos et al, 2022). 

Legislative restrictions on farming practices can potentially also cause synergy with organic 
practices. Natura 2000 protected areas and nitrate vulnerable areas as designated by the 
water framework directive (WFD) both put constraints on the farming practices allowed on 
land within their respective areas. These restrictions could be similar to the ones applied to 
organic farming, hence providing synergy.  

Furthermore, previous research found that beneficial socio-economic conditions can 
enhance the presence of organic farming in an area (Malek et al, 2019). Therefore, we included 
socio-economic variables such as accessibility to cities, human wellbeing, road density, 
population density, and irrigation as a proxy for the level of mechanisation on a farm. Country 
dummy variables were also included in the model to capture any national policy context that 
could affect the presence or absence of organic agriculture. 

All variables were aligned to the same coordinate reference system and spatial resolution of 1 
km2. Variables with a Pearson correlation of > 8 or < -8 were removed from the analysis, as 
well as variables with a variance inflation factor > 10 to reduce multicollinearity. All 
continuous variables were standardised with z-score standardisation for easier comparison 
between variables. A stepwise forward and backwards elimination of variables was conducted 
to get the best model with the least amount of non-significant variables and the best Akaike 
Information Criterion value. The model was then evaluated with AUC, ROC, and McFadden 
adjusted R2. This was done for each constellation of the model. 

According to our model, organic producers are most notably located close to markets, where 
population density is the strongest predictor across all organic producer types (Table 3). 
Population density and human wellbeing have a stronger positive effect on the location of 
organic crop farms. Accessibility to cities and road density have a stronger positive effect on 
organic livestock producers.  

Organic producers are also more likely to be found in less favourable agricultural areas. Areas 
with steeper slopes and lower soil quality are more likely to have organic farms. Steep slopes 
have a stronger probability for organic livestock farms than crop or mixed farms. Natura 2000 
areas increase the odds of organic producers being in a location by 12%. Nitrate vulnerable 
areas increase the odds by 4%. These effects are stronger for organic crop producers.  
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Table 3: Results of the logistic regression.  

PRODUCT ALL LIVESTOCK CROPS MIXED 

Variable Coeff. 
Odds 
ratio 

Coeff. 
Odds 
ratio 

Coeff. 
Odds 
ratio 

Coeff. 
Odds 
ratio 

Accessibility -0.31*** 0.73 -0.76*** 0.47 -0.15*** 0.86 -0.09*** 0.91 

Road density 0.17*** 1.19  0.46*** 1.59  0.20*** 1.22  0.11*** 1.12 

Travel to HC -0.25*** 0.78 -0.10*** 0.91 -0.43*** 0.65 -0.08*** 0.93 
Population 

density  1.31*** 3.71  0.93*** 2.53  1.88*** 6.52  1.29*** 3.62 

Irrigation  0.08*** 1.08  0.23*** 1.26     

AWC  0.09*** 1.09 -0.03. 0.97  0.02* 1.02  0.11*** 1.12 

Bulk density  0.05*** 1.05    0.01* 1.01 -0.032*** 0.97 

CEC  0.04*** 1.04      0.15*** 1.16 
Coarse 

fragments  0.01*  1.01 -0.30*** 0.74  0.09*** 1.09  0.15*** 1.16 

Sand  0.21*** 1.23    0.22*** 1.24  0.14*** 1.15 

pH value -0.09*** 0.92 -0.16*** 0.85 -0.23*** 0.79 -0.62*** 0.54 

Phosphorus -0.40*** 0.67 -0.12*** 0.88 -0.442*** 0.64 -0.034** 0.97 

Nitrogen -0.09*** 0.91  0.19*** 1.21 -0.11*** 0.90   

SOC  0.19*** 1.21  0.15*** 1.16  0.28*** 1.32  0.38*** 1.46 

Flat land -0.14*** 0.87 -0.12*** 0.89 -0.21*** 0.81 -0.19*** 0.83 

Elevation -0.26*** 0.77   -0.178*** 0.84   

Slope  0.19*** 1.21  0.36*** 1.43  0.22*** 1.25  0.19*** 1.20 
Protected 

area  0.12*** 1.12  0.13*** 1.13  0.25*** 1.28  0.08*** 1.08 

Nitrate 
vulnerable  0.04*** 1.04  0.14*** 1.15  0.16*** 1.17  0.13*** 1.14 

Aridity -0.07*** 0.93   -0.23*** 0.80  0.10*** 1.10 

M.A. Air temp    0.69*** 1.99    0.86*** 2.36 

M.D. Air temp     -0.046*** 0.96  0.14*** 1.15 

A.R. Air temp  0.17*** 1.19  0.29*** 1.33  0.22*** 1.24   

Annual precip    0.10*** 1.10     

Precip season -0.03*** 0.97  0.28*** 1.32 -0.18*** 0.84   

Countries 
included in 

analysis 
EU27, NO, CH, UK 

AT, BG, CY, CZ, EE, 
EL, ES, FI, FR, HR, 
HU, IT, LT, PT, RO, 
SE, SK 

BG, CY, CZ, EE, EL, 
ES, FI, FR, HR, HU, 
IT, LT, MT, PT, RO, 
SE, SK 

AT, BG, CY, CZ, EE, 
EL, ES, FI, FR, HR, 
HU, IT, LT, LV, PT, 
RO, SK 

Sample size 559,114 30,588 266,939 112,261 

AUC  0.69  0.79  0.74  0.72 

McFadden adj 
R2  0.09  0.20  0.14  0.12 

Note: Coefficients with significance levels of p: *** < 0.001, ** 0.001 – 0.01, * 0.01 – 0.05. AUC and 
McFadden adjusted R2 for each producer category, including all categories. Odds ratios are calculated 
by exponentiating the coefficients. Empty cells mean the variable is not significant for that producer 
category. Data from Sandström et al 2025. 

Climate is more varied across the producer types. Organic livestock and mixed farms are 
more likely to be located in areas with higher mean annual temperature. Organic crop 
producers are more likely to be located in arid areas.  
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Country context plays a role in the probability of the presence of organic farms. Most notably, 
western European countries seem to have a higher probability of having organic farms due to 
their country context (Sandström et al., 2025). 

 

3. Ex-ante high-resolution adaptation 
and technical implementation 

3.1. Baseline Changes  

In Deliverable 6.1, Conceptualizing the LAMASUS Toolbox, we introduced the CLUMondo 
model. Here, we reflect on the modifications made based on expert feedback. This section 
highlights the main adjustments to the model after completing D6.1, focusing on model 
calibration, validation with existing literature and post-modelling results, and model 
enhancements to represent organic farming as a distinct land system.  

In the updated CLUMondo model, we reconstructed the baseline land-use map to correct the 
previous overrepresentation of high-intensity agricultural classes by integrating the revised 
nitrogen-input estimates from Koeble et al. (in press). This refinement better represents 
management intensity in the base year of the model and thereby allows the model to track an 
SSP2 pathway more faithfully, capturing both intensified production on high-productivity 
systems and reduced contribution in low-productivity areas (Popp et al., 2017; Riahi et al., 
2017). Forest-management intensity classes have also been refined following the 
methodology of Scherpenhuijzen et al., (2025), now accounting for both anthropogenic and 
natural disturbance regimes across all forest types.  

A logistic-regression model was developed for the newly defined “forest” and “low-intensity 
arable cropland” classes. This enables the model to incorporate these land-use changes 
endogenously, ensuring consistency and to consider the principal independent variables that 
will be the main driver for each LUM intensity.  

Table 4 shows that percentage changes in land allocation compared to CLUMondo’s initial 
land cover map from D6.1 are mostly related to those land systems that include management 
intensities. This highlights that while GIS data sources are valuable for describing land cover, 
they provide limited insights into management intensity. To capture this aspect, we need 
information on human responses, which can be more effectively derived through modelling 
approaches that incorporate behavioural elements, such as ex-post econometric modelling. 

https://www.lamasus.eu/wp-content/uploads/LAMASUS_D6.1_Toolbox.pdf
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Table 4: Area changes of the different land use and land use change classes in the new baseline map. 

CLASS 2020 D6.1 
(KM2) 2020 NEW (KM2) Δ (NEW-D6.1) Δ % 

Low-density Rural 
Settlement  60,563 60,563  0  0.00 

Medium-density Peri-
urban Settlement  105,296 105,296 0  0.00 

High-density Urban 
Settlement 127,367 127,367 0 0.00 

Wetlands  64,043 64,043 0 0.00 
Forest, Shrub and 
Cropland Mosaics  393,588 393,588 0 0.00 

Forest, Shrub and 
Grassland Mosaic  598,823 598,823 0 0.00 

Low-intensity Arable 
Cropland  7,367 156,984 149,617 2.94 

Medium-intensity 
Arable Cropland  265,012 613,929 348,917  6.86 

High-intensity Arable 
Cropland  675,545 177,011 -498,534 -9.80 

Low-intensity 
Grasslands  104,139  111,919 7,780 0.15 

Medium-intensity 
Grasslands  182,931 205,875 22,944 0.45 

High-intensity 
Grasslands  123,913 93,189 -30,724 -0.60 

Permanent Cropland  96,175 96,175 0  0.00 
Close To Nature 

Forestry + Primary 
Forest  

303,548 404,140 100,592 1.98 

Combined Objective 
Forestry  734,978 700,146 -34,832 -0.68 

Intensive forestry + 
very intensive 

forestry 
693,880  628,120 -6,576 -1.29 

Water Bodies  156,597 156,597 0 0.00 
Bare Rock and Shrubs  391,379 391,379 0 0.00 

 

Changes in the lusmatrix 

Building on the updated baseline map and revised class intensity counts, another key 
modification concerns the adjustment of productivity levels across the different LUMs. This 
adjustment is implemented in CLUMondo through the so-called lusmatrix, which specifies the 
average productivity of each land system. For each land system, a ‘productivity indicator’ was 
used. These are populations for urban systems, crop production for arable systems, livestock 
density for grassland systems and wood production for forestry systems. For mosaic systems, 
a combination of these indicators was used. Subsequently, the ratios of productivity between 
different systems with a similar indicator were calculated. For example, a high-intensity 
cropland has a higher productivity of arable crops compared to a low-intensity cropland, 
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thereby having a higher ratio. These ratios of change subsequently influence the likelihood of 
changes to a different land system, for example, based on changes in overall demand for 
arable crops. These ratio changes are informed by econometric post-modelling estimates, 
land use and statistical information. In the following section, we will explain all the 
modifications that have been made to better represent these ratio changes.  

Population mainly drives urban land systems; however, other land systems also provide 
housing. Because of this reason, all land systems of the Sandstrom et al. (2024) map are 
overlaid with the population grid of Batista e Silva et al. (2021). Final calculations result in 
Table 5, these values are going to be used per each land class intensity to avoid 
misrepresentation of urban areas in rural contexts.  

Table 5: Average population size per km2 in arable land, grassland, and forest areas 

 WESTERN REGION EASTERN REGION NORTHERN 
REGION 

SOUTHERN 
REGION 

Arable land 
(pop/km2) 45 44 33 23 

Grassland (pop 
(pop/km2) 47 62 32 24 

Forest (pop 
(pop/km2) 15 13 5 19 

 

Arable crops can be located on arable cropland land systems and the mosaic of forest, shrubs, 
and croplands. In the other land systems, no arable crops are produced. Medium intensity 
cropland was overlaid with GlobalWheatYield4km (Luo et al., 2022). To better harmonise the 
ratio between low, medium and high intensity compared to the land system map of D6.1, the 
nitrogen input map was used (Koeble et al., in press). The ratio differed per region, however, 
South and East Europe showed the best results as they best represented all intensity classes. 
Because of the non-linear relationship between nitrogen input and crop yield, the ratio 
between high and medium is adjusted downwards following the Michaelis-Menten curve and 
natural nitrogen uptake by arable crops (Kuppe & Postma, 2024; Liu et al., 2024; Meloni et al., 
2024). The ratio used (low/medium/high): 0.75/1/1.2 (Table 6). Then this ratio is multiplied 
by the value found for medium-intensity cropland (Table 7).   
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Table 6: Nitrogen ratio of the different arable land intensities 

MANAGEMENT INTENSITY 
REGION 

EU RATIO 
Western Eastern Northern Southern 

Low intensity arable 
cropland 0.63 0.46 0.74 0.57 0.45 0.75 

Medium intensity arable 
cropland 1.00 1.00 1.00 1.00 1.00 1.00 

High intensity arable 
cropland  1.41 1.00 1.34 1.54 1.44 1.20 

 

Table 7: Production of arable crops per intensity class (in t/km2)  

 WESTERN 
REGION EASTERN REGION NORTHERN 

REGION 
SOUTHERN 
REGION 

Low intensity arable 
cropland (t/km2) 544.68 416.32 658.07 199.47 

Medium intensity arable 
cropland (t/km2) 726.24 555.09 877.43 398.93 

High intensity arable 
cropland (t/km2) 871.49 666.11 1052.92 797.86 

 

For the mosaic land systems, the share of arable cropland within the mosaic is calculated 
and multiplied by low-intensity cropland. The reasoning behind this is that mosaic 
croplands have a relatively low amount of nitrogen input. A validation has been done by 
overlaying GlobalWheatYield4km with the mosaics. Wheat is considered as a good indicator 
of arable crop productivity, as it is produced throughout Europe and has the highest 
production of cereal types (Luo et al., 2022).  

Permanent crops have no distinction between classes; the start value of permanent crop 
production from CAPRI is divided by the area of permanent crops. This has not changed with 
respect to the previous version. 

Livestock can be placed on grassland systems and the mosaic forest, shrubs and grassland. 
Grassland classes are overlaid with data from Malek et al. (2024). Cattle grazing and sheep 
and goat density are used as indicators of grassland productivity. Note that the values from 
sheep and goats' density have been converted into Livestock Units (LSU).  

Also, for grasslands, a ratio between the intensities is calculated (Table 8). The ratio is based 
on the livestock data layer of Malek et al. (2024), in which the three intensity classes of that 
data source are used. The same ratio is applied to the whole of Europe (low/medium/high): 
0.4/1/1.6 ( 

Table 9). For grassland mosaics, the same procedure as the mosaic of arable cropland is 
applied ( 
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Table 10). 

 

Table 8: Ratio of livestock units (per km2)  

 

WESTERN 
REGION 

EASTERN 
REGION 

NORTHERN 
REGION 

SOUTHERN 
REGION 

EU 
LEVEL 

RATIO 
EU 

N° Obs Ratio N° Obs Ratio N° 
Obs Ratio N° Obs Ratio N° Obs Ratio 

Low 
intensity 2,642  0.71  26,721  0.58  16  0.75  21,245  0.22  50,621  0.47  

Medium 
intensity 102,507  1.00  14,050  1.00  1534  1.00  25,402  1.00  133,887  1.00  

High 
intensity 

           
82,577  

          
1.21  

                
1  

              
0.83  

                 
5 

               
0.93  

               
472  

         
1.22  

            
72,395  

              
1.62 

 

Table 9: Livestock production in grassland LUMs (in LSU/km2)  

 WESTERN 
REGION 

EASTERN 
REGION 

NORTHERN 
REGION 

SOUTHERN 
REGION 

Low intensity grassland 
(t/km2) 62.22 51.52 62.22 12.05 

Medium intensity grassland 
(t/km2) 133.44 110.49 133.44 25.84 

High intensity grassland 
(t/km2) 215.65 178.56 215.65 41.76 

 

Table 10: Final outcomes of livestock production for the mosaic (LSU/km2)  

 WESTERN 
REGION 

EASTERN 
REGION 

NORTHERN 
REGION 

SOUTHERN  
REGION 

Grassland in FOREST SHRUB AnD 
grassland mosaics (%) 0.38 0.38 0.38 0.33 

Final Production in Mosaics 
(LSU/KM2) 23.70 19.54 23.79 4.04 

 

Wood is produced in the forest classes and grassland and cropland mosaics. The wood 
production ratios are derived from National Forest Inventory (NFI) data. We used data for 10 
countries: Norway, Sweden, Germany, Austria, Poland, Slovenia, Spain, Belgium, Czechia, and 
Ireland. The dataset records the volume of standing trees for each plot at two time points, as 
t0 (vol0) and t1 (vol1).  The percentage change between the volume measurements t0 and t1 
was then calculated for each plot and subsequently grouped into categories with 20% 
intervals. We overlaid the plot locations with the forest management map, and for each forest 
management class, we derived the final distribution over the intervals. This distribution was 
corrected for the average timespan between vol0 and vol1, per forest management class.  
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To calculate the ratios of forest productivity, we used this distribution, indicating the yearly 
occurrence of a volume decrease per 20% interval per forest management class. We only 
considered the volume intervals indicating a decrease in volume. The yearly occurrences 
found over those volume decrease intervals are the following (Table 11). 

Table 11: Ratios for volume per forestry class  

% ALL UNMANAGED 
FOREST 

CLOSE-TO-
NATURE 

FORESTRY 

COMBINED 
OBJECTIVE 
FORESTRY 

INTENSIVE 
FORESTRY 

VERY 
INTENSIVE 
FORESTRY 

0-0.2 0.20 0.07 0.24 0.39 0.63 

0.2-0.4 0.00 0.09 0.18 0.20 0.36 

0.4-0.6 0.00 0.18 0.28 0.30 0.39 

0.6-0.8 0.40 0.50 0.59 0.63 0.57 

0.8-1 2.83 1.71 1.63 1.69 1.12 

 

Next, we applied a formula to calculate the ratios. We multiplied the annual occurrence of a 
volume decrease per 20% interval with the average value of that interval (for the interval of 80 
to 100% decrease in volume this value is 0,9; for the interval of 60 to 80% it is 0,7; for the 
interval of 40 to 60% it is 0,5; for the interval of 20 to 40% it is 0,3; and for the interval of 0 to 
20% it is 0,1). 

The results after applying the formula are presented below for the five forest management 
classes. Those ratios were normalized to medium = 1 (Table 12). 

 

Table 12: Volume ratio of five forest management classes  

UNMANAGED 
FOREST 

CLOSE-TO-
NATURE 

FORESTRY 

COMBINED 
OBJECTIVE 
FORESTRY 

INTENSIVE 
FORESTRY 

VERY INTENSIVE 
FORESTRY 

0.58 0.54 0.83 1.00 1.30 

0.70 0.65 1.00 1.21 1.57 

 

Unmanaged forests have very few plots and are protected. Therefore, this number was 
ignored. So low intensity forestry = close to nature forestry, medium = combined objective 
forestry, and high = average of intensive forestry and very intensive forestry (Table 13). 

 

Table 13: Final volume ratio for the three forest class intensities  

LOW INTENSITY FORESTRY MEDIUM INTENSITY FORESTRY HIGH INTENSITY     FORESTRY 

0.65 1.00 1.39 
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Those ratios were multiplied by the average wood production (m3/km2) (Table 14). This was 
calculated by dividing the total regional roundwood production (estimated by FAOSTAT) by 
its total forest area.  

Table 14: Final wood production (in m3/km2) with ratio applied  

REGION LOW INTENSITY 
FORESTRY (m3/km2) 

MEDIUM INTENSITY 
FORESTRY (m3/km2) 

HIGH INTENSITY FORESTRY 
(m3/km2) 

North 154.78 237.06 329.82 

East 252.66 386.99 538.41 

South 84.64 129.63 180.36 

West 285.33 437.03 608.04 

 

For the mosaics, the same procedure as for arable crops and grassland has been applied. 
Here we utilised, as described in the previous paragraph, the FAOSTAT production, as they 
provide more recent numbers compared to Verkerk et al., 2015. Then, we derived the 
production by multiplying the values from the low intensity forest class to the percentage of 
forest contained in the mosaics. The final values are summarised in Table 15. 

 

Table 15: Wood production (in m3/km2) of the forest in shrub cropland and grassland mosaics.  

 WESTERN 
REGION 

EASTERN 
REGION 

NORTHERN 
REGION 

SOUTHERN  
REGION 

Forest in Shrub and cropland 
mosaic (%) 0.40 0.43 0.48 0.28 

Forest in shrub and grassland 
mosaic (%) 0.38 0.44 0.35 0.27 

Final Production in Mosaic 
CROPLAND (m3/km2) 114.73 107.76 73.70 23.98 

Final Production in Mosaic 
GRASSLAND (m3/km2) 109.98 112.03 54.22 23.26 

3.1.1. Conversion rules updates 

In CLUMondo the conversion elasticity ranges from 0 to 1, determining the resistance of 
land use types to change. Higher values impose stronger conversion restrictions. A value of 
1 implies a full conversion restriction, keeping the land system constant over time (as is e.g. 
the case for high-density urban settlements).  

Building upon the work on the Modelling Toolbox described in D6.1, we improved the model 
elasticities by lowering the restriction of conversion for low and medium density 
settlements, allowing an intensification of urban areas, and the possibility of sprawl to new 
settlements.   

We kept wetlands stable at 0.9 because we allow some agricultural activity in those areas, 
especially in regions like Western Europe where this is still happening in the current socio-

https://ec.europa.eu/eurostat/databrowser/view/for_area/default/table?lang=en
https://www.lamasus.eu/wp-content/uploads/LAMASUS_D6.1_Toolbox.pdf
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economic conditions Giersbergen et al., (under review). Table 17 shows that the decrease of 
wetlands for all agricultural activities is rather negligible.   

Similarly to the urban areas, we lowered the conversion elasticities of low and medium 
intensity arable land to better depict a process of intensification of agricultural activities 
(Table 16). Furthermore, we lowered the mosaic elasticities to avoid the overrepresentation 
in the satisfaction of the wood and agricultural demand that was observed in the previous 
version. Grassland was not altered as the SSP2 is not projecting a huge increase of livestock 
products in the near future (2050), in line with the Fricko et al., (2017). 

Regarding the forestry classes, we increased the conversion elasticities for the close to nature 
forestry class, to represent a pathway of protection of natural areas under SSP2, with an 
increase of this class expected in Iberian and Carpathian areas (Štěrbová et al., 2024; Vadell 
et al., 2022). Conversely, we reduced the elasticities of combined and very intensive forestry 
to permit more flexible management transitions and push in region that with climate change 
will also increase new plantations in the intensive forestry management (i.e., northern UK, 
Sweden and Baltic region).  

As mean annual temperatures rises, we expect a modest shift toward more intensive farming, 
as declining productivity in some areas leads producers to intensify elsewhere. Figure 4 (next 
section) illustrates this in arid or abandonment-prone contexts, for example in parts of Spain, 
France, and the Baltic region, where cropland and grassland intensification classes occur 
under the new elasticities and where an increase of land degradation is observed (Engman et 
al., 2025; Erb et al., 2016).  

 

Table 16: Conversion elasticities LUC (0 from 15 are following the same order of the previous table) 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

New 0.5 0.6 1 0.9 0.4 0.4 0.3 0.4 0.5 0.4 0.5 0.6 0.6 0.7 0.4 0.5 
Old 0.8 0.9 1 0.9 0.5 0.5 0.3 0.4 0.7 0.4 0.5 0.6 0.6 0.4 0.5 0.6 

 

3.1.2. Changes in future land use projections 

Following the rationale of SSP2, the Figure 5 and Figure 6 below compare our updated results 
with the previous projections. The main differences are a more constrained expansion of 
high-intensity cropland in Eastern Europe, better preservation of near-natural forests, 
increased close-to-nature forest cover across the Iberian Peninsula alongside intensified 
forestry activity in Portugal and Spain, in line with the historical trend (Vadell et al., 2022).  At 
the same time, a rise in high-intensity grassland in central Spain compared with both the base 
year and the earlier projection has been observed (Schils et al., 2022). In Western Europe, 
particularly France, an expected intensification in the Loire, Britanie, and Normandie regions 
can be observed, in line with the pathway of current input increase in the area (Billen et al., 
2018). Finally, Latvia, Lithuania, Sweden, and Norway have shown an increase in intensive 
forestry management, as warmer temperatures will favour new plantation establishment 
(Blattert et al., 2023; Di Fulvio et al., 2024). The full details of the projections are summarised 
in Table 17. 
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Lastly, the model shows an overall improvement in its performance, primarily due to a refined 
representation of management intensity classes. This allows for more accurate outcomes 
when capturing processes such as cropland intensification and the protection of natural 
areas. These improvements were made possible through ex-post econometric modelling 
information, which provides a more realistic depiction of anthropogenic activities. 

 

 

Figure 4: Ex-ante restructured base year (2020).  
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Figure 5: Final SSP2 projections 2050. 

 

Figure 6: Spatial comparison of land-use allocations in CLUMondo regions for the base year (2020) and 
SSP2 projections for 2050 under old and new model parameterizations.  
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Table 17: Area changes in SSP2 projections 2020-2050  

CLASS 2020 (KM2) 2050 (KM2) Δ (KM2) Δ % 

Low-density Rural 
Settlement  60,563 61,300 7,370 0.0145 

Medium-density Peri-urban 
Settlement  105,296 130,776 25,480 0.501 

High-density Urban 
Settlement  127,367 127,370 3 0.001 

Wetlands  64,043 63,261 -782 -0.015 
Forest, Shrub and Cropland 

Mosaics  393,588 343,482 -50,106 -0.985 

Forest, Shrub and Grassland 
Mosaic  598,823 416,589 -182,234 -3.583 

Low-intensity Arable 
Cropland  156,984 127,488 -29,496 -0.580 

Medium-intensity Arable 
Cropland  613,929 474,328 -139,601 -2.745 

High-intensity Arable 
Cropland  177,011 486,436 309,425 6.084 

Low-intensity Grasslands  111,919 73,400 -38,519 -0.757 
Medium-intensity Grasslands  205,875 150,492 -55,383 -1.089 

High-intensity Grasslands  93,189 175,930 82,741 1.627 
Permanent Cropland  96,175 103,278 7,103 0.140 

Close To Nature Forestry + 
Primary Forest  404,140 492,324 88,184 1.734 

Combined Objective Forestry  700,146 430,564 -269,582 -5.301 

Intensive forestry + very 
intensive forestry  628,120 880,150 252,030 4.956 

 

3.2 ORGANIC UPDATES TO CLUMONDO 
Based on the WP4 work on organic agriculture and following section 2, organic land systems 
were added to the CLUMondo model for Europe. The WP4 work provided two main things: 
First, a map of the current location of organic farms across Europe, which was used to 
determine which agricultural pixels in the land system for CLUMondo are organic (see Table 
# for a land system comparison of the base year). Second, predictors and beta coefficients for 
the predictors can be used to determine the future location suitability of each land system.  

All other settings were adapted to include three organic systems in the CLUMondo model: 
Organic cropland, Organic grassland and Organic mixed systems. The settings were adopted 
from the SSP2 scenario, whereas demand for arable cropland, permanent cropland and 
livestock was derived from CAPRI data. Table 18 reports the percentage by land system with 
and without the three organic systems included. 
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Table 18: Percentage of each land system in CLUMondo 2020 in the versions with and without organic 
land systems 

LAND SYSTEM CLUMONDO 
ID 

PERCENTAGE 
Without organic With organic 

Water and glacier  3.1 3.1 
Low-intensity settlement 0 1.2 1.2 

Medium-intensity settlement 1 2.1 2.1 
High-intensity settlement 2 2.5 2.5 

Wetlands 3 1.3 1.3 
Forest, shrub and cropland mosaics 4 7.7 6.9 
Forest, shrub and grassland mosaic 5 11.8 10.9 

Low-intensity arable cropland 6 3.1 2.8 
Medium-intensity arable cropland 7 12.1 11.4 

High-intensity arable cropland 8 3.5 3.3 
Low-intensity grasslands 9 2.2 2.1 

Medium-intensity grasslands 10 4.0 3.8 
High-intensity grasslands 11 1.8 1.8 

Permanent cropland 12 1.9 1.5 
Primary forest 13 0.3 0.3 

Nature forest management 13 7.7 7.7 
Multifunctional forests 14 13.8 13.8 

Intensive forest management 15 10.2 10.2 
Plantation forests 15 2.1 2.1 

Bare, rock and shrub  7.7 7.7 
Organic mixed systems 16  0.6 

Organic cropland 17  1.9 
Organic grassland 18  1.2 

 

In the map with organic land systems, the share of conventional agricultural land systems has 
decreased to give room to organic. We see that the organic classes came primarily from the 
mosaic classes and medium-intensity cropland. In the new map, we then have 0.6% organic 
mixed systems, 1.9% organic cropland and 1.2% organic grassland out of the total land area, 
including lakes in the map.  

In the CLUMondo model, the lusmatrix indicates how much one pixel of each land system can 
contribute to fulfil demands for food production, wood production and housing, which are 
reflected in land systems from which production or population demands can be derived. The 
organic land systems will contribute to population, arable cropland, permanent cropland, 
livestock and organic land demand. To calculate what the organic land systems contribute to 
the demands, we assume a 24% yield gap for organic arable cropland compared to medium 
intensity arable cropland in the model based on yield gap estimates from de la Cruz et al 
(2023) and Alvarez (2022). For organic permanent cropland, we assume a 5% yield gap 
compared to conventional permanent cropland. For permanent cropland, the literature is a 
little bit less certain on what the yield gap is, with large variations between different crops. 
However, most literature ends up stating a yield gap between 0-10% (Kniss et al., 2016; Lesur-
Dumoulin et al., 2017; Cárceles Rodríguez et al., 2023). For livestock, we assumed the stocking 



 

 

Public 25 

density to be 15% less on organic grasslands than medium intensity grasslands, following the 
logic applied in Basnet et al. (2023). 

For organic mixed systems that have both arable and/or permanent crop and livestock 
production, the land system contribution to each demand is calculated by taking the value 
ascertained from the above yield gap calculations and multiplying that by the average share 
of the land system contained within the pixel. For example, one organic cropland pixel 
contributes 551 tons to the overall arable cropland demand. One organic mixed system pixel 
contains, on average, 24% arable cropland (38% grassland, 1% permanent cropland), so the 
551 tons are multiplied by 0.24 to get the contribution to arable cropland demand from the 
organic mixed system. 

The conversion elasticities for all organic land systems were set to 0.6. That way, the elasticity 
is slightly higher than the conversion elasticity for all conventional agricultural land systems. 
This is to reflect the reality of the effort that it takes for farmers to convert to organic practices. 

As a business-as-usual (BAU) scenario, we assume an increase to 15% of organic land out of 
the total utilised agricultural area (UAA) by 2030. This is based on a linear trend of organic 
growth from historical data in the EU. CLUMondo is run per macro-region; north, south, west 
and east. As each region at the start year 2020 has different shares of organic land, we assume 
each region are trying to reach the 15% target but given the different starting ratios in the end 
we assume the north has 17%, the south 16%, the west 15% and the east 14% organic land 
out of total UAA. For preliminary results, see Figure 7.  

Because the north already had a lot of organic area from the start there is not much increase 
of organic land in this region. In the west of Europe, specifically grassland areas in the 
Netherlands, Germany and Belgium, there is a lot of conversion from conventional agriculture 
to organic grassland and organic mixed land. In France, there is a large expansion of organic 
grassland in the provinces Occitania and Aquitaine close to the border to Spain and around 
the city of Toulouse. Lithuania is seeing some expansion of organic mixed and cropland 
around cities. There is also an increase in organic land in Poland and the Czech Republic, in 
these countries it is more scattered with a slight clustering around cities. Hungary, Croatia 
and Slovakia has a smaller increase in organic land. In Greece, there is conversion to organic 
land on low-intensity cropland. The south Italy see some expansion of organic land close to 
already organic areas, and the north sees an increase in organic land around cities. In Spain 
and Portugal, there is an increase in organic land around Seville and Lisbon. However, these 
results are preliminary and changes to the model and therefore the results are still pending 
implementation. 



 

 

Public 26 

 

Figure 7: Land system map of preliminary results from running the 15% share of organic land scenario 
in CLUMondo.  

Note: The static land system are water, permanent snow and glaciers and bare, rock and shrub. These 
land systems are shown in white and are static in the model meaning they do not change.  
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4. Policy relevant validation 
This section presents the validation of the improved CLUMondo model with organic farming 
as separate land systems against independent, policy-relevant data sources to assess its 
accuracy. Specifically, it tests whether the spatial predictions of organic farming suitability—
derived from ex-post econometric modelling—correspond with observed uptake patterns at 
the regional and parcel levels. Two complementary validation exercises are conducted: one 
using high-resolution parcel-level data from France to assess recent organic conversions, 
and another using CAP payment data from the Common Audit Trail System (CATS) at the 
NUTS-3 level across Europe. Together, these validations evaluate the model’s ability to 
capture real-world responses to policy incentives and strengthen its credibility for use in 
forward-looking scenario analysis. 

4.1. VALIDATION WITH FRENCH PARCEL DATA 
 

To assess whether the Organic Suitability Map is a good predictor of future organic farming 
adoption, we compared the predictions from the Organic Suitability Index with the new 
organic certifications in France in 2021 and 2022. The Organic Suitability Index contains the 
probabilities calculated from the regression in Section 2.2 made into a 1x1km pixel map, 
where each pixel has a probability value of 0-1.  For this analysis, we excluded all land 
parcels that were already organically certified in 2020 from the sample, to avoid endogeneity 
issues, since these plots contributed to the construction of the index. The sample includes 
conventional farmed plot and land that was newly converted to organic in 2021 or 2022 (as 
shown in Table 19. 

Table 19: Number of Utilised Agricultural Areas (in million ha) by farming type, excluding plots 
certified organic in 2020 

YEAR CONVENTIONAL ORGANIC 

2020 24.48 0.00 

2021 24.26 0.54 

2022 24.14 0.82 

 

The validation data used in this analysis comes from the French Land Parcel Identification 
System (LPIS), which provides comprehensive geospatial information on all agricultural 
plots receiving CAP subsidies in France. This ensures near-complete coverage of the French 
agricultural landscape (Cantelaube and Carles, 2014). Using these data, we can identify each 
year whether a plot is certified organic or conventionally farmed. By merging the Organic 
Suitability Map with the LPIS data, we are able to assign each plot a predicted probability of 
conversion to organic farming and compare it with its actual farming status. 

Figure 8 shows that plots converted to organic in 2021 and 2022 had significantly higher 
average suitability scores than plots that remained conventional. Specifically, in 2021, newly 
organic plots had an average suitability score of 0.482 compared to 0.441 for conventional 
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plots. In 2022, the gap persisted, with scores of 0.488 for organic plots and 0.441 for 
conventional ones. Table 20 shows the results of a probit model assessing the probability 
that a plot is organically certified based on its suitability score. The findings reveal a 
significant and positive association between the Organic Suitability Index and the likelihood 
of organic certification. 

This analysis supports the predictive validity of the Organic Suitability Index in identifying 
plots most likely to convert to organic farming. However, it is important to note that this 
validation focuses exclusively on agricultural land, while the index itself assigns suitability 
scores to all types of land. 

 

Figure 8: Suitability Index by Organic Status in 2021 and 2022 

Note: We compare conventional and newly converted organic practices for the years 2021 and 2022. *** indicates a 
statistically significant difference in mean Suitability Index between the two groups (p ≤ 0.001). 
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Table 20: Probability that land is organically certified as a function of the Suitability Index 

 2021 
(1) 

2022 
(2) 

Suitability index 0.720*** 
(0.0058) 

0.891*** 
(0.0049) 

Intercept -2.287*** 
(0.0029) 

-2.164*** 
(0.0024) 

AIC 2,111,377 3,027,444 

N 9,034,093 9,151,036 

% organic 2.52 3.98 

 
Note: This table reports the results of a probit model estimating the likelihood that a land parcel is organically certified 
as a function of the Organic Suitability Index. Column 1 refers to the situation in 2021, and Column 2 to 2022. 
Standard deviations in parentheses. ***p < 0.001. 

 

4.2. VALIDATION ACROSS EUROPE USING NUTS-3 DATA 
To assess the spatial validity of the organic farming suitability index generated through 
CLUMondo, we rely on high-resolution administrative data from DG AGRI on certified 
organic farming areas. This confidential dataset provides detailed NUTS-3 level coverage 
across all EU Member States (except the Netherlands) and includes the United Kingdom. As 
of the time of analysis, it represents the most spatially detailed and up-to-date official 
dataset on organic farming areas available at the European scale. By comparing these 
regional statistics to the modelled suitability outputs, we can evaluate whether the model 
assigns high suitability scores to regions where organic farming is taking place. This allows 
for a policy-relevant validation of the model’s performance at a level of aggregation that 
reflects how funding and regulatory decisions are typically made. 

We make use of the CATS database (Clearance Audit Trail System), which contains official 
records of agricultural subsidy payments made under the Common Agricultural Policy 
(CAP). These financial accounts, maintained by the European Commission, provide 
comprehensive NUTS-3 level data on actual CAP expenditures to beneficiaries across all 
budget lines. Unlike FADN data, which is limited to larger commercial farms, CATS includes 
the full population of recipients and thus avoids sample selection bias associated with 
structural thresholds. This broader coverage is critical when validating spatial policy models, 
as it better captures regional variation in farm types, practices, and conditions. 

The dataset we received from DG AGRI covers the period 2014–2022 and includes, per CAP 
measure, the amount of quantity claimed by beneficiaries, the quantity verified through 
measurement, and the final quantity determined after administrative and/or on-the-spot 
checks. These three measures offer insights into both the demand for support and the 
effectiveness of administrative validation. Discrepancies between claimed and determined 
quantities—often due to rejected applications, eligibility issues, or non-compliance—provide 
useful information on administrative bottlenecks and implementation gaps that can inform 
model interpretation. 
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CLUMondo projections begin in 2020 and are produced annually. We therefore restrict our 
comparison to the years 2020, 2021, and 2022, aligning the CLUMondo outputs with the 
CATS and DG AGRI datasets over this three-year period. While the time span is limited, the 
analysis covers a broad cross-section of European regions, with data available for 1,063 
NUTS-3 units. This provides a solid empirical basis to assess how well the model reproduces 
recent regional patterns of organic farming expansion and CAP measure uptake. 

 

Figure 9: Comparison of CLUMondo-modelled organic farming area and CAP-reported organic 
support. 

Note: CAP-reported organic support (CATS, determined quantity) at NUTS-3 level for 2020–2022. 
Annual R² values: 0.71 (2020), 0.65 (2021), 0.69 (2022). 

The comparison of absolute levels of organic farming area modelled with CLUMondo and 
reported through CAP subsidy data (CATS, determined quantity) at the NUTS-3 level shows 
(see Figure 9) a consistent and positive correlation across 2020, 2021, and 2022. With R² 
values between 0.65 and 0.71, the model captures regional differences in organic farming 
reasonably well, indicating that the spatial allocation of organic systems within CLUMondo 
aligns with where organic practices are actually supported. This provides confidence in the 
empirical basis and spatial logic used to parameterize the suitability maps and transition 
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probabilities in the model. Regions with high organic support tend to have high modelled 
organic area, suggesting that the modelled patterns broadly reflect real-world outcomes. 

 

 
 

 

Figure 10: Annual changes in organic farming area modelled by CLUMondo and CAP-reported organic 
support. 

Note: CAP-reported organic support (CATS, determined quantity) at NUTS-3 level. Left panel: changes 
from 2020 to 2021. Right panel: changes from 2021 to 2022. 

 

Interpreting the year-on-year changes is more nuanced (see Figure 10:). As shown in the 
second figure, the association between annual changes in modelled and reported organic 
area is weaker, with most points clustered near zero and several large outliers. This reflects, 
in part, the difference in purpose and resolution: CLUMondo is designed to simulate longer-
term structural changes rather than short-term fluctuations, while the administrative data 
may reflect short-term policy changes, reporting lags, or reclassification effects. 
Additionally, changes in organic certification may not be immediately visible in land-use 
patterns at the resolution used in the model. In the current version, the model also exhibits 
comparatively larger changes than the reported statistics, particularly in 2021, with stronger 
negative as well as positive shifts. This pattern is less pronounced in 2022 and may reflect 
an adjustment effect, where the first simulated year shows more relocations because certain 
land systems are initially forced into locations where they are not stable. Nonetheless, the 
direction of change remains broadly consistent in many regions, and the model does not 
systematically over- or under-predict uptake across years. This suggests that while short-
term shifts are harder to capture, the medium- to long-term spatial trends remain well 
represented. 
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5. Conclusion 
This report has shown how ex-post econometric evidence can be used to recalibrate high-
resolution land-use models. Two strands of analysis were central: a spatial econometric 
model of land-use and land-management drivers based on the harmonised WP2–WP3 
database, and a logistic regression of organic farming uptake using harmonised certificate 
data. These models quantify how policy and non-policy factors affect land-use choices, and 
provide explicit measures of uncertainty around those effects. 

The results were used to update CLUMondo in three ways: revising land system maps to better 
reflect observed input intensities and productivity, adding explicit organic land systems with 
calibrated yield penalties and transition constraints, and deriving suitability maps for organic 
uptake from the estimated probabilities. This ensures that transition rules in the model reflect 
observed behaviour rather than stylised assumptions. 

Validation against parcel-level French data and NUTS-3 level European data confirms the 
predictive value of the empirical suitability maps. The model reproduces observed patterns of 
organic conversion more accurately when informed by the econometric estimates, improving 
external validity and policy relevance. 

These updates strengthen the basis for forward-looking projections in LAMASUS. By 
grounding CLUMondo’s transition dynamics in observed behavioural responses, the model 
can provide more credible inputs for WP8 scenario development and stakeholder 
engagement. The framework captures medium- to long-term land-use trends while signalling 
the degree of uncertainty, making it a more reliable tool for ex-ante policy analysis at both EU 
and national levels. 

Overall, this deliverable demonstrates how high-resolution land-use models like CLUMondo 
can be empirically grounded using the harmonised databases and policy evidence 
developed within LAMASUS. The resulting improvements in parameterisation increase the 
credibility of the scenario outputs produced in WP8. They ensure that projections reflect 
both observed behaviour and uncertainty, which is critical for informing stakeholder 
engagement and supporting robust, science-based policy design. 
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7. Annexes 
Table A1: Mapping between DownscaleR and CLC land use classes 

CLC level 3 Ecosystem type level 2 (ETL2) 
augmented  

ETL2 augmented 
abbreviations UNFCCC 

Continuous urban fabric Urban URBN Settlements 

Discontinuous urban fabric Urban URBN Settlements 

Industrial or commercial units Urban URBN Settlements 

Road and rail networks and associated 
land 

Urban URBN Settlements 

Port areas Urban URBN Settlements 

Airports Urban URBN Settlements 

Mineral extraction sites Urban URBN Settlements 

Dump sites Urban URBN Settlements 

Construction sites Urban URBN Settlements 

Green urban areas Urban URBN Settlements 

Sport and leisure facilities Urban URBN Settlements 

Non-irrigated arable land Arable cropland ACRP Cropland 

Permanently irrigated land Arable cropland ACRP Cropland 

Rice fields Arable cropland ACRP Cropland 

Vineyards Permanent crops PCRP Cropland 

Fruit trees and berry plantations Permanent crops PCRP Cropland 

Olive groves Permanent crops PCRP Cropland 

Pastures Pastures PAST Grassland 

Annual crops associated with 
permanent crops 

Heterogeneous agricultural areas HCRP Cropland 

Complex cultivation patterns Heterogeneous agricultural areas HCRP Cropland 

Land principally occupied by agriculture 
with significant areas of natural 
vegetation 

Heterogeneous agricultural areas HCRP Cropland 

Agro-forestry areas Heterogeneous agricultural areas HCRP Cropland 

Broad-leaved forest Woodland and forest WOFO Forest area 

Coniferous forest Woodland and forest WOFO Forest area 
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CLC level 3 Ecosystem type level 2 (ETL2) 
augmented  

ETL2 augmented 
abbreviations UNFCCC 

Mixed forest Woodland and forest WOFO Forest area 

Natural grasslands Grassland GRSL Grassland 

Moors and heathland Heathland and shrub HEAS Other Land 

Sclerophyllous vegetation Heathland and shrub HEAS Other Land 

Transitional woodland-shrub Woodland and forest WOFO Forest area 

Beaches dunes sands Sparsely vegetated areas SPVA Other Land 

Bare rocks Sparsely vegetated areas SPVA Other Land 

Sparsely vegetated areas Sparsely vegetated areas SPVA Other Land 

Burnt areas Sparsely vegetated areas SPVA Other Land 

Glaciers and perpetual snow Sparsely vegetated areas SPVA Other Land 

Inland marshes Wetlands WTLN Wetlands 

Peat bogs Wetlands WTLN Wetlands 

Salt marshes Marine inlets and transitional 
waters 

MITW Other Land 

Salines Marine inlets and transitional 
waters 

MITW Other Land 

Intertidal flats Marine inlets and transitional 
waters 

MITW Other Land 

Water courses Rivers and lakes RILA Other Land 

Water bodies Rivers and lakes RILA Other Land 

Coastal lagoons Marine inlets and transitional 
waters 

MITW Other Land 

Estuaries Marine inlets and transitional 
waters 

MITW Other Land 

Sea and ocean Marine MARI Other Land 

 

 


