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Executive summary 
Deliverable D6.2 advances the objectives of the LAMASUS project by verifying the high-
resolution spatial land use model CLUMondo through regional case studies. Two ex-ante 
behavioural farm/regional models are used: FAMOS/PASMA for Austria and FarmDyn for 
Germany and Norway. The high-resolution model verification is critical for developing an 
advanced high-resolution land system model as part of the LAMASUS model toolbox. The 
approach developed here ensures that the high-resolution model accurately represents farm 
and regional-level decision-making. The work conducted for this deliverable focuses on 
identifying differences in input data and model structures between CLUMondo and the ex-
ante behavioural models, quantifying the spatial mismatches in land-use allocations in the 
case study regions, as well as discussing the implications of these model differences for 
effective policy development and assessment. Overall, the deliverable demonstrates the 
added value of integrating ex-ante behavioural models for policy assessments, contributing 
to a more robust policy analysis and supporting the development of the LAMASUS modelling 
toolbox.  
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1. Introduction  
The overall aim of LAMASUS is to support the development of policies in the framework of the 
European Green Deal by creating tools for an innovative governance model. A key element is 
the development of the high-resolution spatial land system model that captures regional 
differences in agricultural production. Spatially explicit land use models are essential for 
effective policy development due to their capacity to capture regional and structural 
differences in the agricultural landscape. 

Deliverable D6.2 contributes to the LAMASUS project by verifying the high-resolution spatial 
land use model CLUMondo through regional case studies employing two ex-ante behavioural 
farm models: FAMOS/PASMA for the Austrian case study and FarmDyn for the case studies in 
Germany and Norway. 

For generating the new high-resolution spatial land system modelling as a component of the 
LAMASUS modelling toolbox, the verification of model rules of the high-resolution model is 
key to ensuring that such a model accurately reflects farm/regional level decisions and the 
variations therein. For that purpose, ex-ante behavioural models at the level of land-use 
decision makers, i.e., farmers, were developed to analyse the policy change impacts at the 
farm and regional level and to provide land-use decision-making level insights. 

The work carried out for the task of high-resolution model verification using ex-ante 
behavioural modes aims i) to identify differences in input data and model structure between 
CLUMondo and the farm/regional level models, ii) to quantify spatial mismatches in land use 
allocations for each case study region and iii) to discuss the implications of these differences 
for facilitating policy analysis and development.  

The following questions can be answered with this deliverable:  

1. How do the high-resolution spatial model and the ex-ante behavioural models 
complement each other for policy assessment? 

2. What do ex-ante behavioural models add to high-resolution spatial models? 
3. What could be the benefits of linking behavioural elements from agent-based models 

to high-resolution land use models such as CLUMondo? 

For the Austrian case study analysis, the following data sources were used: Farm Survey 
Structure 2020, and the database of the Integrated Administration and Control System (IACS). 
These data sources provide detailed information about the agricultural landscape on the farm 
and regional level, i.e., farm characteristics, farm endowments, participation in policy 
programmes and the agri-environmental policy program ÖPUL. For Germany, a statistically 
based synthetic farm population from Pahmeyer et al. (2021) is used that links farm-level data 
from the federal state of North Rhine-Westphalia to the grid level. This link requires a 
comparison of the parametrisation of CLUMondo that operates at the grid level. The synthetic 
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population builds on work from Schäfer & Kuhn (2018) and relies on the Farm Structure 
Survey and data from IACS. Similarly, Norway uses official data on farm subsidies and the 
related activity data as model inputs (Landbruksdirektoratet 2024). In comparison to the 
CLUMondo model, the data used in the ex-ante behavioural models is actual farm micro data, 
well-suited to farm responses to policy changes. 

The report is structured as follows: Chapter 2 provides an overview of the models used for the 
high-resolution model verification exercise (see Chapter 2.1) and an overview of the model 
verification framework (see Chapter 2.2). This is followed by the results section (see Chapter 
3) presenting model verification results for the case studies Austria, Germany, and Norway. 
Chapter 4 describes various approaches and studies aimed at unraveling agricultural land 
dynamics and farmer responses, moving from aggregate macro-economic analyses to fine-
grained, context-specific realities. The report concludes with a discussion (see Chapter 5) and 
a description of the conclusions to draw from the results obtained (see Chapter 6).   
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2. Verification of high-resolution model 
using ex-ante behavioural models 

This deliverable presents the results obtained from a case study-based application of a 
project-specific model verification routine. We conducted a two-fold case-study analysis 
comparing 1) land use modelling with CLUMondo and FAMOS/PASMA to compare a global-
scale spatially explicit and dynamic land system model (CLUMondo) to land use allocation 
performed by a bottom-up non-linear programming model (FAMOS/PASMA), and 2) baseline 
land use intensity maps of CLUMondo and FarmDyn, which allows for assessing heterogeneity 
of model outputs and for a quantitative discussion of potential information losses regarding 
the representation of land use intensities using CLUMondo.   

This section describes the methodology of high-resolution model verification using ex-ante 
behavioural models within the LAMASUS project. First, an overview of the models employed 
for the model verification exercise is provided, followed by an overview of the model 
verification framework. 

2.1. MODEL CHARACTERISTICS 

Table 1 provides a high-level overview of the three models applied in this deliverable: 
CLUMondo, FAMOS/PASMA, and FarmDyn.  

Table 1: Model characteristics of CLUMondo, FAMOS/PASMA, and FarmDyn. 

Model Model type Spatial 
resolution Data 

Method 

Land use 
allocation 

Land use 
expansion/ 
abandonment 

CLUMondo Land allocation 
model 1 km grid 

CORINE land 
cover, Copernicus 
grassland data, EU 
Crop Map 2018 

Land 
suitability 

Rule-based 
allocation of 
land 

FAMOS/PASMA 

Bottom-up non-
linear 
programming 
model 

Farm/regional 
level 
(municipality, 
NUTS3) 

Calibration farm 
structure survey 
2020, IACS 

Prices, yields, 
variable 
production 
costs 

Opportunity 
cost approach; 
legal and 
agronomic 
restrictions 

FarmDyn 

Bio-economic farm 
model based on 
mixed-inter 
programming 

Farm level 
Farm typology, 
farm management 
data 

Based on 
optimisation 

Decision option 
to work off-
farm and rent 
additional land 

 

The models under analysis differ in spatial resolution, underlying modelling approach and 
assumptions, as well as the level of data aggregation regarding data inputs and outputs. Model 
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verification was conducted for the reference year 2020 and focuses on applied decision rules 
for land use allocation as well as model inputs.  

2.1.1. CLUMondo 

CLUMondo conducts global land use change modelling at the interface of macro-economic 
demands (demand scenarios) and the local physical and socioeconomic context (local 
suitability and conversion rules) (cf. van Asselen & Verburg, 2013). Results are obtained for 
the 1km grid.  

In the LAMASUS project, CLUMondo is run at the European level. CLUMondo requires five 
main inputs to run the land use allocation procedure. First, we have the basemap, which is a 
land system map in 1x1 km pixels describing the land use management of the study area 
(Europe) for the base year 2020. In the current baseline version used for CLUMondo this map 
contains the land use management classes: Low, medium and high intensity urban 
settlements, low, medium, and high intensity arable cropland, low, medium, and high 
intensity grassland, forest shrub and grassland mosaics, forest shrub and cropland mosaics, 
permanent cropland, wetlands, close to nature forestry, combined objective forestry and very 
intensive forestry. Second, we have land use demands, these demands are the main driver of 
the land use changes in the model. The default drivers are population change, arable and 
permanent crop production, livestock numbers, and wood harvest. More demands can be 
added depending on the scenario to be simulated. The demands are often derived from partial 
or general equilibrium models, scenarios, or trends. Each land use management class can 
contribute to fulfilling one or more of the demands. How much they can contribute to each 
demand is defined in a land use provisioning file. Third, we have land use conversion rules, 
which determine which land use class can be converted into another and how long that 
conversion should take. Fourth, we have spatial policies and restrictions that can be added to 
change land use conversion rules in certain areas, for example, nature reserves. Fifth, we have 
the location suitability of a certain land use class, which is derived from logistic regressions 
using socio-economic, climate, and soil factors. 

The model will try to fulfil the demands for each timestep in the model by allocating the land 
use classes that can do this. If one demand is not met with the area available, then the model 
will choose to intensify. The land use classes will be in the most suitable areas available for 
each land use class.  

2.1.2. FAMOS/PASMA 

FAMOS/PASMA operate at the farm and regional levels – specifically, at the municipality or 
NUTS3 level for PASMA, and at the individual farm level for FAMOS. In PASMA, each region 
can be understood as one single farm, whereas in FAMOS, results from different farm types 
are aggregated to the regional level (Sinabell et al., 2011). Both models are driven by a land 
allocation decision module that simulates farmers’ decisions regarding crop selection, setting 
the level of livestock activities and deciding the type of management. Decisions are 
constrained by historically observed management options and resource endowments.  



 

 

Public    6 

A scenario module allows for the adjustment of various variables that might influence 
farmers’ decision-making, e.g., input and output prices, premiums of agricultural programs, 
and resource constraints. Input data stems from Statistics Austria’s farm structure survey and 
the EU IACS.  

The spatially explicit agricultural land use optimisation models maximise total net benefits of 
crop and grassland production subject to agricultural land endowments at 1 km grid 
resolution in Austria. Total agricultural land is kept constant, whereas the sum of grassland 
categories, i.e., intensive/ extensive grassland, and alpine pastures does not decline within a 
grid cell. This ensures compliance with national regulations on land preservation. Average 
gross margins are calculated using the simulated dry matter crop and grassland yields, 
respective commodity prices and variable production costs (e.g., costs of tillage, seeds, 
fertilisers, labour and insurance). Agricultural premiums, i.e., direct payments, and agri-
environmental payments, are considered. The commodity prices represent a three-year 
average from Statistics Austria (2015–2017), and variable production costs are derived from 
the standardised gross margins catalogue. The commodity prices, variable production costs, 
as well as the agricultural policy premiums are kept constant in order to single out the effects 
of climate change and the mitigation policy scenario. The objective function maximises the 
total net benefits of agricultural production (𝑁𝑁𝑁𝑁, in €) and is defined as 

max𝑁𝑁𝑁𝑁 =  �𝐺𝐺𝑀𝑀𝑖𝑖,𝑗𝑗,𝑘𝑘 ∗ 𝑋𝑋𝑖𝑖,𝑗𝑗,𝑘𝑘 −  

⎩
⎪
⎨

⎪
⎧�

𝜂𝜂𝑖𝑖,𝑗𝑗 ∗  𝑋𝑋�𝑖𝑖,𝑗𝑗𝑎𝑎

𝛼𝛼 (𝑋𝑋𝑖𝑖,𝑗𝑗0 )(𝛼𝛼−1) ,         𝑥𝑥𝑖𝑖,𝑗𝑗0

𝑖𝑖,𝑗𝑗

> 0 

�𝜂𝜂𝑖𝑖,𝑗𝑗 ∗  𝑋𝑋�𝑖𝑖,𝑗𝑗
𝑖𝑖,𝑗𝑗

,               𝑥𝑥𝑖𝑖,𝑗𝑗0 = 0 𝑖𝑖,𝑗𝑗,𝑘𝑘

 (1)  

 

where GM refers to gross margins (€/ha), and X is land use (ha). The index i denotes the grid 
cell, with I = 71,604 for Austria, j the land use category, with J = 4 (cropland, intensive 
grassland, extensive grassland, and alpine pastures), and k represents land management 
practices, with K = 11 (including three alternative crop rotations; three tillage systems 
including conventional tillage, reduced tillage, and conventional tillage with winter cover 
crops; one fertilizer application level derived from N-balance calculations; rainfed and 
irrigated cropland and grassland; two mowing frequencies and pasturing). We add flexibility 
to the model by assuming no additional costs for converting cropland to grassland. Land use 
category change within each 1 km grid cell is restricted to land use categories of grassland 
and cropland available in the historical reference period (1981–2020), and agricultural land 
cannot be abandoned.  

The first term of the objective function sums the product of gross margins and land use for 
each i, j, and k. GM includes a linear (i.e., variable) cost component from standard gross margin 
calculations. The second term represents the non-linear cost function. The product of the 
marginal value η for each i, j and modelled land use 𝑋𝑋� (defined by Eq. 3) to the power of the 
coefficient α is divided by observed land use from the calibration period Xo and summed over 
grid cell i and land use category j. The coefficient α is assumed to be 2 representing a quadratic 
cost function, which is usually used if further information is not available (see e.g., Howitt, 
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1995) ( Howitt, 1995). For technical reasons, the quadratic part of the cost function is used if 
the observed land use category is greater than zero; otherwise, the linear equation component 
is used in the model. It is assured that the model is also calibrated to the reference crop 
rotation in each cropland grid cell i. The equality equations 2 and 3 ensure that land use 𝑋𝑋�𝑖𝑖,𝑗𝑗 
summed over management practices k equals total land endowment b by land use category j 
and grid cell i.  

�𝑋𝑋�𝑖𝑖,𝑗𝑗
𝑗𝑗

= 𝑏𝑏𝑖𝑖,𝑗𝑗 ∀𝑖𝑖, 𝑗𝑗 (2)  

𝑋𝑋�𝑖𝑖,𝑗𝑗 =  �𝑋𝑋𝑖𝑖,𝑗𝑗,𝑘𝑘  ∀𝑖𝑖, 𝑗𝑗
𝑘𝑘

 (3)  

The model results are available on the level of 1 km grid cell and can be aggregated to 
agricultural production regions in Austria.  

Both CLUMondo and FAMOS/PASMA distinguish different intensity levels for both grass and 
cropland, determined by the amount of fertiliser applied and/or mowing frequency. However, 
other land use categories are not as easily aligned across the models. For example, CLUMondo 
includes mosaic land use categories, which represent a mixture of forest, shrub, and crop-
/grassland uses. Instead, FAMOS/PASMA captures this only indirectly, by specifying the area 
under each land use type within each pixel. FAMOS/PASMA explicitly highlight “alpine 
pasture” as a distinct land use category, which holds particular importance in the Austrian 
agriculture and land use context, whereas CLUMondo does not separately identify this 
category in its land use classification. In CLUMondo, alpine pastures could be captured by both 
the grassland classes, low-to high intensity, forest, shrub and grassland mosaic and possibly 
the bare, rock and shrub mosaic. As each pixel in CLUMondo is 1 km2, the area within this 
pixel is not completely homogenous and, in reality, contains multiple land systems. The cut-
off threshold for a pixel to be classified as one class is that it needs to contain 50% or more of 
one land system. On average, the grassland pixels contain 66% grassland, while the mosaic 
classes on average contain 27% grassland, and bare, rock and shrub contain 8% grassland. 
Notably, FAMOS/PASMA does not include forest land use data. Table 2 shows which land use 
management categories of both CLUMondo and FAMOS/PASMA are used for comparison and 
which have been excluded.  

Table 2: Land use management categories of CLUMondo and FAMOS/PASMA included and excluded from 
comparison (2000 reference year) 

CLUMONDO FAMOS/PASMA 

Mosaics (forest, shrub, grass- or cropland) Alpine meadows/ pastures 
Arable cropland (low-, medium-, high-intensity) Arable cropland 

Low-intensity grassland Grassland – 1 cut 

Medium-intensity grassland Grassland – 2 cuts 

High-intensity grassland Grassland – 3 or more cuts 

Permanent crops Permanent crops (vineyards and fruit orchards) 
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Excluded: 

• Forest 
• Water and glaciers 
• Settlements 
• Wetlands 
• Bare, rock, shrub 

 

source: own elaboration 

2.1.3. FarmDyn 

FarmDyn is a bio-economic farm model based on mixed-integer programming. The model is 
realised as a flexible, modular template that covers multiple farm branches, including dairy, 
suckler cows, beef fattening, pig fattening, piglet production, arable farming, and biogas 
plants. Farm branches may be operated individually or in various combinations, thereby 
allowing for the modelling of a wide range of farms and farm types. FarmDyn reflects the 
economic and biophysical flows at the farm level, providing a high degree of detail in the 
description of technology and processes. The model optimises farm management to select the 
activities that yield the highest profit, as measured by the net present value of the farm.  

 

Figure 1: Overview of the FarmDyn model (own figure based on Lengers et al., 2014) 

Past research conducted with the FarmDyn model dealt with topics such as GHG abatement 
(Lengers et al., 2014), technology adoption (eg, Pahmeyer & Britz, 2020; Kuhn et al., 2022), 
policy impact assessment (Kuhn et al., 2019; Heinrichs al., 2021), and sustainability analysis 
(Kokemohr et al., 2022). The aforementioned studies primarily relied on case studies and 
samples from typical farms or smaller farms, with limited geographical coverage. In these 
studies, due to the reduced sample size, a greater data depth could be realised; however, this 
came at the cost of compromising spatial coverage, thereby limiting the generalizability of the 
findings across broader regions. Therefore, within the LAMASUS project, we build upon and 
advance this methodology to address these limitations and apply FarmDyn in a spatially 
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explicit setting. Different approaches are used in the German and Norwegian case studies. For 
Germany, a synthetic farm population that provides farm-level data in combination with 
spatially explicit plots (Pahmeyer et al., 2021) is processed for the first time for an application 
in FarmDyn and linked to the grid level, requiring data processing before and after the 
FarmDyn simulations. For Norway, we use the Norwegian Farm Subsidy Database, which 
publishes all subsidies and public payments farms receive alongside the activity data farms 
receive payments for and spatial information on the farmstead (Landbruksdirektoratet, 
2024). We use the farmstead to localise the farms and to visualise results in maps. 

2.2. OVERVIEW OF THE MODEL VERIFICATION FRAMEWORK 

The LAMASUS modelling toolbox (see D6.1 LAMASUS Modelling Toolbox) consists of models 
differing in spatial resolution, scale, and land-use representation. The high-resolution spatial 
land system change model CLUMondo is verified using ex-ante behavioural models 
developed for regional case studies. Specifically, FAMOS/PASMA is applied to the Austrian 
case study, while FarmDyn is applied to Germany and Norway. Figure 1 provides a graphical 
overview of the model verification framework. 

 

Figure 2: Overview of the model verification framework (source: own illustration). 

  

https://www.lamasus.eu/wp-content/uploads/LAMASUS_D6.1_Toolbox.pdf
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FAMOS/PASMA – Case study Austria  

For the Austrian case study, we compared the baseline land use input data of CLUMondo and 
FAMOS/PASMA for the reference year 2020. Figure 2 schematically represents the steps of 
the model comparison that we followed. First, each set of input datasets, i.e., of CLUMondo 
and FAMOS/PASMA, is described and analysed individually to showcase the representation 
and distribution of individual land use categories. Second, a spatial overlay of each individual 
set of land-use categories considered agriculturally used area from FAMOS/PASMA and 
CLUMondo is conducted using QGIS geographic information systems. This is done to find key 
similarities and differences between the baseline land use datasets of the two models.  

 

Figure 3: Schematic representation of the model verification routine for the Austrian case study 
(source: own illustration). 

FarmDyn – Case study Germany and Norway 

FarmDyn is a bio-economic farm model that provides optimal allocation of production 
decisions at the farm level under given restrictions, being described in more detail in section 
2.2.3. Within the LAMASUS project, the FarmDyn model is extended and calibrated to larger, 
spatially-explicit farm samples to display land-use management changes affected by political 
intervention. The current depiction of land-use management in FarmDyn is reflected in the 
farming activities, as well as the corresponding inputs, technologies, and management 
practices, including fertiliser use, mowing intensity, and labour input. To realise the model 
comparison, the land use classification of CLUMondo is replicated in FarmDyn. The aim of 
this comparison is to understand fundamental differences of the models and help to verify the 
model rules and parameterisation of the high-resolution spatial models. Grassland 
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management is chosen for this purpose as it is a common characteristic across models and 
case studies. The grassland intensity indicator from CLUMondo is depicted in Figure 4 below: 

 

Figure 4: Grassland intensity indicator in CLUMondo (Sandström et al., 2025). 

In CLUMondo, grassland is classified into three levels —high, medium, and low— based on 
livestock density unit (LSU), mowing frequency per year, and nitrogen input per hectare. 
High-intensity grasslands (dark green) are characterised by high livestock loads (>100 LSU), 
frequent mowing (≥3 times/year), or high nitrogen input (≥150 kg N/ha). Low-intensity 
grasslands have low livestock density (<50 LSU), infrequent mowing (<3 times/year), and 
minimal nitrogen input (<50 kg N/ha). Medium intensity covers all other moderate values for 
the three indicators.  

The following steps were taken to perform the comparison: 

1. Identify regional overlap: Identify the regions covered by FarmDyn and use the model 
to create the grassland intensity indicators of CLUMondo on a 1x1 km raster for each 
of the overlapping regions. 

2. Raster selection: Select rasters for comparison that have the relevant land use (Low-
intensity grasslands, Medium-intensity grasslands, High-intensity grasslands). For 
the German case, 10 rasters are selected as a random sample of the study region of 
North Rhine-Westphalia, a large Federal state with a diverse agricultural structure and 
grassland management. For the Norwegian case, all rasters that are classified as 
grassland from the CLUMondo baseline results within the municipality of Time, which 
is characterised by intensive livestock farming, are used. This includes roughly 60 
rasters. 

3. Merging farm data to raster: Spatially explicit farm data is matched to the selected 
rasters. For the German case, plots within the 10 selected rasters are selected from 
the synthetic farm population developed by Pahmeyer et al (2021) for NRW, and the 
corresponding farms are identified. FarmDyn usually operates at the level of case 
study farms that are not spatially explicit. The synthetic farm population combines 
IACS data at the plot level with a farm typology from Kuhn & Schäfer (2018), providing 
farms with spatially explicit plots that can be located in grids.  Specifically, dairy farms 
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are sourced from the population as they are considered most important in grassland 
management in the case study region, covering around 60 farms for the comparison. 
Farms are related to the grid as soon as one of their plots is within a grid. For the 
Norwegian case, all cattle farms in the municipality Time are simulated as this is the 
most important farm branch in Norway in terms of economic output. 

4. Setting up farms: In the next step, the FarmDyn is calibrated to the observed land use 
and number of animals by restricting the farms’ endowments. This ensures that the 
observed farm characteristics are represented by the model. The FarmDyn model 
allows for a wide range of grassland intensities that can be adapted to the respective 
case studies. For the German case study region in North Rhine-Westphalia (NRW), the 
grassland management options allow a range from 1 to 5 cuts per ha, yields of 5 to 12 
t dry matter per ha, while for Norway cuts in a range from 1 to 3 cuts per ha and yields 
of 3 to 7 t dry matter per ha. The FarmDyn model chooses a cost-efficient mixture of 
grassland management options to sustain the specified herd size, considering energy, 
protein, and fibre requirements. 

5. Model run and intensity creation: In the following, the FarmDyn model is run for all 
farms that have land in the selected grid. In the post-model result creation, the values 
required to estimate grassland intensity in CLUMondo are calculated for every farm, 
including stocking density, nitrogen application, and number of cuts. 

6. Result aggregation: In the final step, the farm results are reallocated to the selected 
grids as FarmDyn is not spatially explicit and runs independently of the grid cells. 
Farms and their plots are linked via identifiers to the grids and the post model 
allocated to the grids. Finally, the shares of the different intensities are estimated. 

 

 

3. Results 
This section describes the high-resolution model verification results of CLUMondo using the 
ex-ante behavioural models FAMOS/PASMS and FarmDyn. The section is structured along the 
three different regional case studies: Austria (FAMOS/PASMA), Germany and Norway 
(FarmDyn).  

3.1. CASE STUDY AUSTRIA 

FAMOS/PASMA and CLUMondo baseline land use data 

When comparing the baseline land use input datasets for the application of FAMOS/PASMA 
and CLUMondo, several challenges arise. Land-use classification of FAMOS/PASMA defines 
75,135 pixels of a total of 85,708 pixels (a share of 87,7%) in Austria as containing some form 
of agricultural usage. CLUMondo, on the other hand, defines a smaller portion of only 43% of 
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pixels in Austria to be found under agricultural usage. This difference is given by the fact that 
FAMOS/PASMA integrates pixels containing several agricultural uses, i.e., one pixel can 
contain various land uses, whereas in CLUMondo one pixel will be classified as being under 
only one exclusive form of agricultural management depending on the share of one individual 
land within a particular pixel (having to contain at least 50% of one individual land use to be 
classified as such). Additionally, CLUMondo integrates shares of other land uses, such as 
forest, bare rock, water, or settlements within one pixel in order to derive a particular land use 
category, whereas FAMOS/PASMA does not. 

Given these differences, we find that in FAMOS/PASMA, 58.5% of all pixels in Austria contain 
cropland, 39.7% contain low-intensity grassland, 52% contain medium-intensity grassland, 
47.8% contain high-intensity grassland, 8.6% contain permanent crops, and 26.8% contain 
alpine pastures. Please note that one pixel can contain multiple types of land use. Hectare 
extents of individual land uses in PASMA/FAMOS align with agricultural statistics reported for 
the year 2020 by the Federal Ministry of Agriculture (BMLRT, 2021).   

The CLUMondo land use classification, on the other hand, reports 12% of pixels as being found 
under cropland usage, 1.3% as grassland, 0.5% as permanent crops and a large share of 29% 
being classified as mosaics of either crop- or grassland dominance. The majority of Austria 
(57.2%), following CLUMondo classification, is defined as other land use, such as forest, 
settlements or other, which is not depicted in FAMOS/PASMA.  

The differences in the two classification schemes explain the difference in the maps provided 
in Figure 4, representing the baseline land use datasets of FAMOS/PASMA and CLUMondo 
(note that the colour of each pixel in the FAMOS/PASMA map shows the land use category, 
occupying the largest proportion of the agricultural land area within each 1km2 pixel.      
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Figure 5: FAMOS/PASMA and CLUMondo baseline land use input data for Austria (year 2020) 
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The spatial overlay of individual land use categories from FAMOS/PASMA and CLUMondo 
(following Table 2) shows that 20% (16,887 pixels) of all pixel classifications of the two model 
baselines match. Figure 5 provides details on the land use categories of CLUMondo baseline 
land use data found within each land use category of FAMOS/PASMA that do not match, i.e., 
where land use categories differ between FAMOS/PASMA and CLUMondo. 

 

Figure 6: Percentage distribution of non-matching CLUMondo land use categories within each land use 
category of the FAMOS/PASMA baseline. 

 

The FAMOS/PASMA cropland land use categories contain small shares of what has been 
classified as permanent crops or medium-intensity grassland in CLUMondo; the largest share 
is made up of mosaic pixels or other land use categories considered non-agricultural. 
FAMOS/PASMA grassland categories contain small shares of grassland attributed to a 
different intensity level in CLUMondo, and some are classified as cropland. The largest shares, 
same as for cropland, belong to CLUMondo categories for mosaic or non-agricultural land use. 
The permanent crops category contains large shares of what has been classified as low- or 
medium-intensity croplands in CLUMondo, very small shares of grassland, but also mosaic 
and other land use pixels. Alpine pastures in the FAMOS/PASMA baseline dataset are mostly 
found in the other land use categories of CLUMondo and a very small share of pixels classified 
as crop or grassland. 

 

3.2. CASE STUDY GERMANY  

We focus our analysis on the German Federal state of North Rhine-Westphalia (NRW). A 
synthetic farm population developed by Pahmeyer et al. (2021) is used. It combines the 
spatially explicit plot data of the IACS and a farm typology based on the Farm Structure Survey. 
The typology is presented in detail by Kuhn & Schäfer (2018). Compared to other sources, this 
typology provides spatially explicit farm data at the plot level. To transfer the grassland 
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management intensity quantification from CLUMondo to the FarmDyn metrics, LSU per km2 

is transferred to LSU per ha, where 100 LSU per km2 correspond to 1 LSU per ha. 

For the German case study, the ten selected grids cover the LUMs “Low-intensity grasslands”, 
“Medium-intensity grasslands”, and “High-intensity grasslands” (Table 3). The grids are 
randomly spread across the German Federal state of NRW, but cluster in the grassland and 
dairy production regions in the northwest and south of the state. Comparing the intensity 
classes, FarmDyn and CLUMondo identify the same high-intensity grids. For these grids, 
FarmDyn identifies high shares of high-intensity grassland, ranging from 64.22% to 100% of 
the land in the grids categorised as high intensity by FarmDyn. In the model, most of these 
farms have around four cuts on their grassland and have more than 1 LSU ha-1, which makes 
them qualified as high-intensity.  

For the medium intensity, the results of CLUMondo and FarmDyn differ more. In general, 
FarmDyn identifies most of the land in medium-intensity grids based on CLUMondo as high-
intensity, with medium-intensity land accounting for only a minor share, ranging from 0% to 
12.33%. In contrast, CLUMondo classifies these mostly as medium-intensity due to having 
more than 1 LSU ha-1, and to a lesser extent, due to having more than 3 cuts ha-1. Only two 
grids in the random grid selection are classified as low-intensity grasslands by CLUMondo.  

In line with the medium intensity, FarmDyn classified the majority of the land as being under 
high intensity, resulting in shares of 87.67% and 69.39%. Again, the classification of FarmDyn 
is strongly driven by the LSU ha-1 exceeding the threshold of 1. This effect is strongly driven 
by the different approaches to estimate stocking density within the modelling framework. 

In summary, the intensity fit between CLUMondo and FarmDyn is relatively poor, likely due 
to conceptual differences in the modelling approaches, such as how stocking density is 
reflected, being discussed in Section 5. On trend, grids that CLUMondo classifies as medium 
or low-intensity managed grassland, the FarmDyn results tend to also have more land in these 
categories. Furthermore, FarmDyn, as a farm-level model, shows that there is a relevant 
heterogeneity of grassland intensity within one grid that is lost in the scale at which 
CLUMondo operates. This has implications for the accuracy of how the land use model reflects 
policy impacts in relation to farm-level decisions and their varying impact on land use. 
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Table 3: Comparison between intensities in FarmDyn and CLUMondo for the German case study in ten 
selected grids (in %) 

LUM 
class 

CLUMondo: LUM 
intensity  

FarmDyn grassland intensity (%) 

Low intensity Medium 
intensity 

High 
intensity 

620 Medium-intensity 
grasslands 

0 12.33 87.67 

620 Medium-intensity 
grasslands 

9.75 19.58 70.67 

610 Low-intensity 
grasslands 

0 1.87 98.13 

620 Medium-intensity 
grasslands 

0 7.21 92.79 

610 Low-intensity 
grasslands 

0 30.61 69.39 

630 High-intensity 
grasslands 

0 0 100 

630 High-intensity 
grasslands 

0 0 100 

620 Medium-intensity 
grasslands 

0 0 100 

630 High-intensity 
grasslands 

0 35.78 64.22 

630 High-intensity 
grasslands 

0 0 100 

3.3. CASE STUDY NORWAY 

The Norwegian case study is chosen to be the municipality Time, in the county Rogaland, on 
Norway's west coast. The municipality is shown in Figure 13 below. The landscape is fairly 
flat and used for agriculture, while the east of the municipality is dominated by moorland. The 
predominant land use, according to Nibio AR50, a Norwegian national land resource dataset, 
is cultivated land (land that is ploughed, and oftentimes used as intensive grassland) in the 
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west, and outfield pasture in the east (NIBIO, 2023). The municipality is chosen for the model 
comparison as a large share of its land is predominantly covered with grassland and therefore 
allows for the comparison of the land use bound to grassland in FarmDyn and CLUMondo. 

Farm data to set up the FarmDyn model is sourced from the Norwegian subsidy database, 
which gathers publications of governmental aid payments to legal entities and private 
persons, including agricultural holdings. The respective payments, alongside details of the 
agricultural land, livestock, grown crops, and harvest for which farmers received payments, 
are published in accordance with the Norwegian Freedom of Information Act (2009).  

 

Figure 7: Land use in the municipality of Time according to Nibios AR50 land use classification 

Figure 8 shows the CLUMondo pixels with grassland in the municipality, while the colouring 
indicates the aforementioned grassland intensity. As can be seen, they roughly match the land 
types of the AR50 map in that higher intensity grassland management can be found in the 
west and less intensive in the east. The predominant land use is class 2 (Medium intensity 
grassland), with a few pixels in the south and west that have high-intensity grassland. Low-
intensity grasslands are missing from the CLUMondo results altogether. 

  



 

 

Public    19 

 

 

Figure 8: CLUMondo grassland categories in Time 

The FarmDyn results for farms in Time can be seen in Figure 9. The figure outlines the 
CLUMondo pixels from before and shows the individual farm run results. Each dot in the figure 
symbolises a single farm located in one of the pixels from CLUMondo. The size of the dots 
represents the relative farm size in Ha. Note that the dots are upscaled, meaning they are not 
following the scale of the rest of the map. This is done to show the results of small farms. The 
colouring matches the CLUMondo land use classes, similar to Figure 14. 

Ten of the analysed farms are found to have high-intensity grassland, 40 have medium-
intensity grassland, and 15 have low-intensity grassland management. The area of the farms 
totals 224.3 ha for high-intensity grasslands, 1064.8 ha for medium-intensity grasslands, and 
585.9 ha for low-intensity grasslands. The results confirm the pattern shown in CLUMondo 
and Nibios AR50 maps in Figures 7 and 9: Farms in the western part of the municipality have 
a higher intensity than those in the eastern part. Notably, several farms have low-intensity 
grasslands on average. This land use class is completely absent in the CLUMondo results for 
the same region. Furthermore, some farms situated in CLUMondo pixels with medium-
intensity grasslands have high-intensity grassland use in the FarmDyn results. This shows the 
variability of intensity on the farm level, which is hidden in the upscaled CLUMondo results. A 
more general pattern is that smaller farms seem to have higher intensity than larger ones, 
indicating that these seem to offset a lower land endowment with higher production intensity. 
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This highlights the potential of farm-level models to provide insights into the effects of farm 
structure. 

 
Figure 9: Land use classes following CLUMondo as calculated in FarmDyn. 

  



 

 

Public    21 

4. Agent-based models to link land 
abandonment decisions to spatial data 

Macro-economic models are indispensable for analysing agricultural dynamics at aggregate 
scales, spanning farm-household to national production levels—but they frequently obscure 
the fine-grained, context-specific realities in which these processes unfold. To address this 
limitation, a suite of studies has projected future land-use trajectories across Europe (Popp et 
al., 2017; Stürck et al., 2018; Zabel et al., 2019), evaluated land-based strategies for achieving 
sustainability targets (Lee et al., 2019; Roe et al., 2019), and examined megatrends poised to 
reshape these trajectories (Debonne et al., 2022; Krzysztofowicz et al., 2020). In most of this 
work, agriculture is treated predominantly as an economic sector, its evolution driven by 
shifts in commodity demand, supply, and trade (EC, 2023; OECD/FAO, 2023). Narrative 
scenarios are employed to incorporate divergent worldviews, social preferences, and policy 
interventions, ranging from dietary changes and environmental awareness to farm-subsidy 
reallocations and agri-technology investments (Delzeit et al., 2018; Mitter et al., 2019; Popp et 
al., 2017).  

An analysis of alternative land abandonment processes was studied in a recent analysis in the 
case study of Terra O Trao Montes, in Portugal (Imbrechts et al., 2024). Building on the results 
of Imbrechts et al. (2024), it is critical to dissect the drivers of land abandonment, a process 
that can both precipitate rural intensification and be easily misinterpreted when its 
underlying mechanisms are insufficiently understood. Imbrechts et al. (2024) constructed a 
land-use matrix to capture change trajectories at both the start and end of each case-study 
period (see Figure 1). This approach builds on Fayet et al. (2022) and shifts the focus from 
fixed landscape outcomes to the processes driving change, thereby bypassing regional 
disparities. The regional occurrence of each trajectory was mapped to visualise local-scale 
spatial patterns of landscape change, enabling us to profile individual localities by the 
prevalence of specific trajectories (see Figure 1). The authors then applied logistic regression, 
estimating coefficients for each independent variable to gauge their significance and direction 
of influence on a binary outcome (Corbelle-Rico et al., 2012), to the most common trajectories 
in four separate “change regressions” (Hatna & Bakker, 2011). In mountainous areas, climate 
and slope emerged as the primary drivers of progressive land-abandonment trajectories. 
Interestingly, when modelling returns to agriculture, slope also exhibited a significant positive 
effect, highlighting its dual role in both abandonment and re-cultivation processes. The 
presence of this shift supports distinguishing between abandonment and post-abandonment 
trajectories, as these pathways may respond differently to the same set of underlying drivers. 
These findings underscore the need to reassess policies aimed at stimulating rural 
development. This is particularly true in regions that suffer from poor connectivity to urban 
centres and climate vulnerability to ensure that interventions are tailored to the specific 
processes governing landscape change, as demonstrated also in the work of Imbrechts et al. 
(2024), and other rural studies. 
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Figure 10: Land use matrix and associated change trajectories at the beginning (t) and end (t + 1) of each 
study period. Adapted from Imbrechts et al. (2024). 

While the study of Imbrechts did not yet progress into agent-based modelling (ABM), earlier 
work of Zagaria et al. (2018, 2021) illustrates how ABM can bridge broad-scale projections of 
land abandonment and site-specific realities, e.g., by acknowledging the effects of declining 
olive prices and tourism development on land use in Lesvos, Greece. However, ABM also 
presents a key methodological challenge: modellers must encode context-dependent decision 
rules while producing outputs tailored to the study area. Meeting this challenge requires (1) 
integrating high-resolution socio-economic data with qualitative insights from stakeholders, 
(2) explicitly representing spatial heterogeneity, and (3) iteratively validating model behaviour 
against empirical observations and expert knowledge. 

Contextualising the model through structured farmer interviews, as in Zagaria et al. (2018), 
consolidates existing literature on local management practices and farming systems. Finally, 
clustering model outputs by trajectory type and linking them to distinct demand scenarios 
and land-use objectives avoids overly uniform conclusions driven solely by technical change, 
instead yielding a more nuanced understanding of how different drivers shape landscape 
transformations (Diogo et al., 2025). 
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Figure 11: Conceptualisation of the framework used in the study of Zagaria et al. to develop an agent-
based model. 

Survey responses were synthesised into a reduced set of indices by aggregating related 
questionnaire items into broader categories. Specifically, indices were adopted for: (1) 
knowledge sources, (2) on-farm practices, (3) current land uses, and (4) future sector outlooks 
to minimise dimensionality. Historical trends in farm area—both owned and rented—were 
likewise consolidated into one index. A “cultural drive” index was derived from items 
reflecting willingness to transfer land to successors, reluctance to relinquish ownership, and 
the prevalence of inherited land. Finally, to quantify each farm’s capacity for change, were 
aggregated indicators of professional engagement, formal agricultural education, 
participation in training programs, and reliance on external knowledge sources, into a single 
“engagement” index. 

The aggregated indices served as inputs to a cluster analysis that identified distinct farmer 
typologies. To validate these empirically derived groups and examine their relationship to 
individual capacities and motivations, we performed a discriminant function analysis (DFA) 
following Hair et al. (2010). The DFA confirmed the stability of the cluster solution and 
quantified how farmers’ skills, resources, and motivations predict their membership in each 
typology (Fig. 2). 

By combining clustering with DFA, we disentangled the diverse drivers of landscape change 
and characterised farmers not as a homogeneous mass but as individuals occupying different 
intensity classes. This approach also illuminated the multifaceted nature of land‐
abandonment trajectories, which cannot be attributed solely to declining commodity prices 
and lack of willingness to cultivate the landscape, but also that tourism can offer a tool to 
maintain and cultivate the landscape and buffer the extensification of the abandonment 
phenomenon.  
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Another approach of ABM can be used in more climate adaptation contexts, which are 
relevant to land abandonment, as the inability to adapt often leads to abandonment. We study 
an example of ABM modelling concerning the type of irrigation choices, as in Zagaria et al. 
(2021). The ABM that they developed explores the effect of changing climate, water policy, 
and farmer attitudes and values on adaptation decision-making by individual farmers in 
Romagna. A farmer’s annual decision-making process begins with a perceptual phase: 
farmers establish whether they perceive a risk of future drought damage and whether they 
perceive a possibility to adapt. The model in this case was divided into external entities (i.e., 
external environment and individual characteristics of the farmers (i.e., assets, values, goals, 
farm, field) and the perceived adaptation options (i.e., options). All these inputs were used to 
divide the structure of the model itself into sub-models. The sub models are divided as follows: 

• Demographic and soil wetness 
• Adaptation decision making  
• Implementation of adaptation and feedback. 

The model comprised three sequential sub-models, each operating on an annual time step 
through to 2050. In the first sub-model, agents’ ages and farm structures evolved within 
irrigated systems, and soil moisture was updated to detect any drought‐induced damage. The 
second sub-model then recalculated annual farm profits and updated each farmer’s 
perception of drought risk; it used these inputs to compute the utility of available adaptation 
measures. In the final sub-model, additional practical constraints were evaluated, and the 
adaptation option with the highest utility was implemented before advancing to the next year. 

Zagaria et al. (2021) evaluated the full model under a range of behavioural scenarios, climate 
scenarios (across multiple RCPs), and policy frameworks. Results indicate that scenarios 
designed to heighten farmers’ perception of drought risk yield the greatest uptake of both 
transformational and incremental adaptations. These effects are most pronounced under 
drier climate projections, with farmers exhibiting highly adaptive decision‐making and under 
water‐use policies that tightly regulate irrigation. Under these combined conditions, the 
region experienced minimal loss of cultivated area, increased irrigation intensity, and a 
concentration of profitability among fewer farms, thereby amplifying current consolidation 
and intensification trends. 
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5. Discussion 
The comparison between the FAMOS/PASMA land use categories and the CLUMondo 
classification reveals notable discrepancies across several land use categories. The 
FAMOS/PASMA cropland land use category is classified as other land use, forest and mosaics; 
small shares of the cropland pixels in FAMOS/PASMA are classified as medium intensity 
grassland and permanent crops. Similarly, this is the case when comparing alpine pasture 
pixels and grassland pixels. These differences can be explained by several factors. Firstly, a 
single pixel in FAMOS/PASMA can encompass multiple land use categories due to its spatial 
resolution and the presence of heterogeneous landscapes. This results in mixed pixels that 
might be classified differently in CLUMondo, which uses distinct classification thresholds and 
land use allocation rules. Secondly, forest is a dominant land use in Austria, but it is not 
explicitly included in the FAMOS/PASMA land use categories analysed here. Even in pixels 
classified as grassland or cropland in FAMOS/PASMA, there may be a significant proportion 
of forest area, which complicates a direct comparison between the CLUMondo and 
FAMOS/PASMA baselines. The absence of forest as a separate land use category in 
FAMOS/PASMA leads to ambiguities, as forest areas are incorporated into other land use 
categories, like mosaic in CLUMondo. This underlines the importance of considering forest 
land use and mixed land use patterns when comparing land use datasets for Austria.  

Some conceptual differences hinder the comparison of intensities between the FarmDyn and 
CLUMondo models. CLUMondo operates at the grid level. The number of livestock per ha 
(stocking density) is related to the total land area in a grid, not to the farmland. The non-
agricultural land in a grid reduces the stocking density related to the land area. This results in 
a systematically higher stocking density of the farm data reflected in FarmDyn compared to 
CLUMondo. As a behavioural model assuming a profit-maximising farmer, the model allowed 
for providing optimal grassland intensity for a given animal stock, using the model design to 
deal with the scarcity of observed and detailed grassland management intensity. Also, the 
grassland management intensity is subject to considerable uncertainty, which hinders the 
alignment of the results from the two models. The estimation of grassland management 
intensity in CLUMondo is based on LSU, mowing frequency, and nitrogen application. The 
LSU data is derived from a global dataset with an original resolution of 0.083 decimal degrees 
(approx. 10km at the equator) (Gilbert et al, 2018), and the mowing frequency original 
resolution is 3000m (Estel et al., 2018). These two datasets have been downscaled in QGIS 
using the nearest neighbour method to 1000m resolution for CLUMondo. A challenge for 
CLUMondo is to find intensity indicator data that covers the entire study area. For the nitrogen 
application data, the data from Koeble et al. (2024) does not cover Norway, Switzerland, or the 
Balkans. In this case, the intensity classification from another land use management intensity 
map of Europe from Dou et al. (2021) is used. Another more conceptual uncertainty is the 
definition and grading into low, medium, and high intensity. In the case of CLUMondo, these 
thresholds have been based on earlier literature attempting to set boundaries for when a 
management practice becomes detrimental to biodiversity (Mayel et al., 2021).  
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For the German case study, a synthetic population is used that distributes farms from 
aggregated statistics. The population has information on the location of farms at the county 
level, but then randomly distributes them in accordance with the observed land use. Hence, 
the exact location of farms and their land is not reflected in the data, and, therefore, they 
cannot be allocated to 1x1 km grids as the unit of comparison. However, the animal stock is 
the central driver of the grassland intensities in FarmDyn. The limitations of the synthetic 
population also cause differences to the CLUMondo results, which are based on more reliable 
data on N excretion and stocking density. 

In the Norwegian case study, the mismatch of the results also partially reflects limitations in 
the database of the Norwegian case study. As only the farm address is available as a spatial 
identifier, only farms within a pixel of managed grasslands in CLUMondo are considered. 
Neighbouring farms that might influence the land use within a pixel are not considered. 
Furthermore, not all identified farms could be modelled due to data gaps and missing farm 
branches in FarmDyn, namely sheep, which is important in the Norwegian context. 

Furthermore, FarmDyn does not use observed management data on N application and 
mowing frequency, as such data is scarce at the farm level. In the German case study this data 
these variables are estimated by the model through fixing the animal stock of farms. In this 
way, the required intensity of grassland production must match the forage needs of the 
observed herd. This reflects that grassland-based farms for dairy and beef production usually 
grow most of the forage on-farm. However, the amount of additional concentrate feed can vary 
between farms. Forage losses during silage production and storage impact the actual share of 
the yield used for feeding, and the models only provide average milk yields. All these aspects 
impact the required grassland management intensity to sustain a dairy or beef herd. 

While ABMs are mostly made in a context-specific manner for case-study conditions, they can 
add to broad-scale modelling as conducted dominantly in LAMASUS. However, the underlying 
framework of ABM models can be readily transferred to other European contexts by first 
identifying the country-specific drivers of land-use change and climate-adaptation practices. 
By explicitly representing heterogeneous farm-level attributes, such as resource 
endowments, decision heuristics, and risk preferences, ABMs capture the diversity of 
adaptation responses across landscapes (Reidsma et al., 2010; Stringer et al., 2020). All these 
examples can lead to a better description of how policies are going to be projected into the 
future, accounting for the heterogeneity of landscapes and drivers. In that sense, ABM must 
not be seen in comparison to large(r)-scale modelling, but rather in a complementary manner 
allowing more in-depth analysis of behaviour-oriented drivers. 
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6. Conclusion 
The high-resolution model verification using ex-ante behavioural models highlights both the 
potential and challenges of integrating different land use models. While FAMOS/PASMA 
provides valuable insights into agricultural land use decisions at the farm and regional level, 
significant discrepancies emerge when compared to the CLUMondo classifications. Due to the 
differences in spatial resolution, land use category definitions and rules for classification, as 
well as mixed land use pixels lead to the poor matching of pixels.  

Concluding the model comparison between FarmDyn and CLUMondo, the land use categories 
between CLUMondo and the data used in FarmDyn fitted relatively well, although this was not 
the unit of comparison. When looking at the intensities in detail, the fit of the identified 
intensities, however, was relatively poor. This is strongly driven by conceptual differences 
between the models and uncertainties in the intensity estimation within each model, as 
discussed above. The results also provide an idea of the heterogeneity of intensities within 
one grid that is lost in CLUMondo due to its level of aggregation. As a behavioural model 
operating at the core unit of the supply side of the agricultural system, FarmDyn is suited to 
capture this heterogeneity and its change in response to policies.  The developed approach to 
align the two models and compare their results allows for the future use of them to analyse 
the same policy scenarios, examining the topic from different perspectives. Thereby, the farm 
model can directly capture farmers’ behaviour and response to changing policies, providing a 
useful addition to a large-scale modelling approach. 

Summarising the comparison between CLUMondo and FarmDyn, CLUMondo covers an 
extensive range of land uses and geographical regions, but compromises on detailed 
information at the plot or farm level. In contrast, FarmDyn, as a bio-economic farm model, can 
provide such detail and also approximate farmers’ behaviour. However, the latter is usually 
applied to smaller case studies and has a high data need, which often leads to restrictive 
assumptions. Therefore, both models need to be seen as complementing each other, 
addressing agri-environmental research questions from different perspectives.  

The findings underscore the importance of transparent methodological harmonisation when 
combining land use information from different models. This deliverable might be used as a 
basis for developing and giving policy advice, accounting for the differences in the model 
representation of land use categories and management. Different models might be used and 
developed for specific policy and research questions. The choice of the model must be suitable 
for answering potential research questions and providing policy recommendations.  
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